
QEMU Code Overview
Architecture & internals tour

Stefan Hajnoczi <stefanha@redhat.com>

Covered topics

Enough details about QEMU to:
● Understand how components fit together
● Build and start contributing
● Debug and troubleshoot

Too little time to step through source code,
follow code references if you want to know
more

What is QEMU?

Emulates x86, ARM, PowerPC, and other
machines

Used for virtualization with KVM and Xen

Written in C, runs on POSIX and Windows
hosts

Code at qemu-project.org under GPLv2

External interfaces
Interacting with the outside world

Command-line options

Guest is defined on command-line:
qemu -m 1024 \
 -machine accel=kvm \
 -hda web-server.img

man qemu for most options

See qemu-options.hx and vl.c:main() for
implementation

QMP monitor

JSON RPC-like API for managing QEMU:
● Hotplug devices
● Stop/continue guest
● Query device information
● etc

Write custom scripts with QMP/qmp.py

See qapi-schema.json and QMP/

HMP monitor

Text-based interface for managing QEMU

Superseded by QMP but handy for interactive
sessions

See hmp-commands.hx

User interfaces

Remote UIs include VNC and SPICE

Local UIs include GTK and SDL

See ui/

Logging

Errors and warnings go to the monitor, if
currently running a command

Otherwise they are printed to stderr

Architecture
How it fits together

QEMU process model

Host Kernel

Guest
RAM

QEMU

QEMU is a userspace process

QEMU owns guest RAM

Each KVM vCPU is a thread

Host kernel scheduler decides
when QEMU and vCPUs run

Can use ps(1), nice(1), cgroups

Main loop

QEMU is event-driven, has async APIs for:
● File descriptor is readable or writeable
● Timer expiration
● Deferred work
Global mutex protects QEMU code
● No need to synchronize explicitly
● Gradually being removed to improve

scalability

See include/qemu/main-loop.h

Architecture summary

Main loop
● Monitor
● UI
● Host I/O

completion
● Deferred

work
● Timers

Host kernel
KVM, host I/O, scheduling, resource limits

vCPU #0
● Run guest

code
● Device

emulation

vCPU #1
● Run guest

code
● Device

emulation

Device emulation
Implementing guest hardware

Hardware emulation model

Accelerators run guest code:
● KVM uses hardware assist (VMX/SVM)
● TCG does binary translation

Devices implement guest hardware:
● See hw/ for code
● List available devices: qemu -device \?

KVM accelerator pseudo-code
open("/dev/kvm")
ioctl(KVM_CREATE_VM)

ioctl(KVM_CREATE_VCPU)
for (;;) {
 ioctl(KVM_RUN)
 switch (exit_reason) {
 case KVM_EXIT_IO: /* ... */
 case KVM_EXIT_HLT: /* ... */
 }
}

Guest/host device split

Guest devices simulate real hardware
● Net example: e1000 PCI adapter
● Disk example: virtio-blk device

Host devices implement I/O
● Net example: tap device
● Disk example: GlusterFS backend

This allows flexible guest/host device pairing

Guest device emulation

Devices have memory or I/O regions
Must implement read/write handler functions

Devices can raise interrupts to notify guest

Inspect devices using info qtree

Inspect memory regions using info mtree

Development
Contributing to QEMU

git clone git://git.qemu-project.org/qemu.git

Build process

./configure shell script detects library
dependencies

Check ./configure output to confirm optional
features are enabled

Only build x86_64 guest support with --target-
list=x86_64-softmmu

Contributing

Specifications and documentation, see docs/

Read CODING_STYLE and HACKING

Use scripts/checkpatch.pl to scan your patches

More info:
http://qemu-project.org/Contribute/SubmitAPatch

Where to find out more

More QEMU architecture overview on my blog:
http://goo.gl/sdaVV

Read the code, documentation is sparse

Mailing list: qemu-devel@nongnu.org
IRC: #qemu on irc.oftc.net

