

Accelerated C++

Practical Programming by Example

by Andrew Koenig and Barbara E. Moo

Addison-Wesley, 2000

ISBN 0-201-70353-X

Pages 336

Second Printing

Table of Contents

Contents

Chapter 0 Getting started
0.1 Comments

0.2 #include

0.3 The main function

0.4 Curly braces

0.5 Using the standard library for output

0.6 The return statement

0.7 A slightly deeper look

0.8 Details

Chapter 1 Working with strings
1.1 Input

1.2 Framing a name

1.3 Details

Chapter 2 Looping and counting
2.1 The problem

2.2 Overall structure

2.3 Writing an unknown number of rows

2.4 Writing a row

2.5 The complete framing program

2.6 Counting

2.7 Details

Chapter 3 Working with batches of data
3.1 Computing student grades

3.2 Using medians instead of averages

3.3 Details

Chapter 4 Organizing programs and data
4.1 Organizing computations

4.2 Organizing data

4.3 Putting it all together

4.4 Partitioning the grading program

4.5 The revised grading program

4.6 Details

Chapter 5 Using sequential containers and analyzing strings
5.1 Separating students into categories

5.2 Iterators

5.3 Using iterators instead of indices

5.4 Rethinking our data structure for better performance

5.5 The list type

5.6 Taking strings apart

5.7 Testing our split function

5.8 Putting strings together

5.9 Details

Chapter 6 Using library algorithms
6.1 Analyzing strings

6.2 Comparing grading schemes

6.3 Classifying students, revisited

6.4 Algorithms, containers, and iterators

6.5 Details

Chapter 7 Using associative containers
7.1 Containers that support efficient look-up

7.2 Counting words

7.3 Generating a cross-reference table

7.4 Generating sentences

7.5 A note on performance

7.6 Details

Chapter 8 Writing generic functions
8.1 What is a generic function?

8.2 Data-structure independence

8.3 Input and output iterators

8.4 Using iterators for flexibility

8.5 Details

Chapter 9 Defining new types
9.1 Student_info revisited

9.2 Class types

9.3 Protection

9.4 The Student_info class

9.5 Constructors

9.6 Using the Student_info class

9.7 Details

Chapter 10 Managing memory and low-level data structures
10.1 Pointers and arrays

10.2 String literals revisited

10.3 Initializing arrays of character pointers

10.4 Arguments to main

10.5 Reading and writing files

10.6 Three kinds of memory management

10.7 Details

Chapter 11 Defining abstract data types
11.1 The Vec class

11.2 Implementing the Vec class

11.3 Copy control

11.4 Dynamic Vecs

11.5 Flexible memory management

11.6 Details

Chapter 12 Making class objects act like values
12.1 A simple string class

12.2 Automatic conversions

12.3 Str operations

12.4 Some conversions are hazardous

12.5 Conversion operators

12.6 Conversions and memory management

12.7 Details

Chapter 13 Using inheritance and dynamic binding
13.1 Inheritance

13.2 Polymorphism and virtual functions

13.3 Using inheritance to solve our problem

13.4 A simple handle class

13.5 Using the handle class

13.6 Subtleties

13.7 Details

Chapter 14 Managing memory (almost) automatically
14.1 Handles that copy their objects

14.2 Reference-counted handles

14.3 Handles that let you decide when to share data

14.4 An improvement on controllable handles

14.5 Details

Chapter 15 Revisiting character pictures
15.1 Design

15.2 Implementation

15.3 Details

Chapter 16 Where do we go from here?
16.1 Use the abstractions you have

16.2 Learn more

Appendix A Language details
A.1 Declarations

A.2 Types

A.3 Expressions

A.4 Statements

Appendix B Library summary
B.1 Input-output

B.2 Containers and iterators

B.3 Algorithms

Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this book, and we were aware of

a trademark claim, the designations have been printed in initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no

expressed or implied warranty of any kind and assume no responsibility for errors or

omissions. No liability is assumed for incidental or consequential damages in connection with

or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For

more information, please contact:

Pearson Education Corporate Sales Division

One Lake Street

Upper Saddle River, NJ 07458

(800) 382-3419

corpsales@pearsontechgroup.com

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data

Koenig, Andrew

Accelerated C++ : practical programming by example / Andrew Koenig, Barbara E. Moo.

p. cm.

Includes index. ISBN 0-201-70353-X

1. C++ (Computer program language) I. Moo, Barbara E. II. Title.

QA76.73.C153 K67 2000

005.13'3—dc21 00-040172

Copyright © 2000 by AT&T, Inc., and Barbara E. Moo

Cover photo copyright © 1995, 2000 by Andrew Koenig

The authors typeset this book (pic | eqn | troff -mpm | dpost) in Palatino, Helvetica, and

Courier, with assorted Sun Sparcstations, Hewlett-Packard laser printers, and two three

helper cats.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,

or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,

or otherwise, without the prior consent of the publisher. Printed in the United States of

America. Published simultaneously in Canada.

ISBN 0-201-70353-X

The C++ In-Depth Series

Bjarne Stroustrup, Editor

"I have made this letter longer than usual, because I lack the time to make it short. " —Blaise

Pascal

The advent of the ISO/ANSI C++ standard marked the beginning of a new era for C++

programmers. The standard offers many new facilities and opportunities, but how can a

real-world programmer find the time to discover the key nuggets of wisdom within this mass of

information? The C++ In-Depth Series minimizes learning time and confusion by giving

programmers concise, focused guides to specific topics.

Each book in this series presents a single topic, at a technical level appropriate to that topic.

The Series' practical approach is designed to lift professionals to their next level of

programming skills. Written by experts in the field, these short, in-depth monographs can be

read and referenced without the distraction of unrelated material. The books are

cross-referenced within the Series, and also reference The C++ Programming Language by

Bjarne Stroustrup.

As you develop your skills in C++, it becomes increasingly important to separate essential

information from hype and glitz, and to find the in-depth content you need in order to grow.

The C++ In-Depth Series provides the tools, concepts, techniques, and new approaches to

C++ that will give you a critical edge.

Titles in the Series

Accelerated C++: Practical Programming by Example, Andrew Koenig

 and Barbara E. Moo

Essential C++, Stanley B. Lippman

Exceptional C++; 47 Engineering Puzzles, Programming Problems,

 and Solutions, Herb Sutter

Modern C++ Design: Applied Generic Programming and Design Patterns,

 Andrei Alexandrescu

For more information, check out the series Web site at

http://www.aw.com/cseng/series/indepth/

http://www.aw.com/cseng/series/indepth/

Preface

A new approach to C++ programming

We assume that you want to learn quickly how to write useful C++ programs. Therefore, we

start by explaining the most useful parts of C++. This strategy may seem obvious when we

put it that way, but it has the radical implication that we do not begin by teaching C, even

though C++ builds on C. Instead, we use high-level data structures from the start, explaining

only later the foundations on which those data structures rest. This approach lets you to begin

writing idiomatic C++ programs immediately.

Our approach is unusual in another way: We concentrate on solving problems, rather than on

exploring language and library features. We explain the features, of course, but we do so in

order to support the programs, rather than using the programs as an excuse to demonstrate

the features.

Because this book teaches C++ programming, not just features/it is particularly useful for

readers who already know some C++, and who want to use the language in a more natural,

effective style. Too often, people new to C++ learn the language mechanics without learning

how to apply the language to everyday problems.

Our approach works—for beginners and experienced programmers

We used to teach a week-long intensive C++ course every summer at Stanford University.

We originally adopted a traditional approach to that course: Assuming that the students

already knew C, we started by showing them how to define classes, and then moved

systematically through the rest of the language. We found that our students would be

confused and frustrated for about two days—until they had learned enough that they could

start writing useful programs. Once they got to that point, they learned quickly.

When we got our hands on a C++ implementation that supported enough of what was then

the brand-new standard library, we overhauled the course. The new course used the library

right from the beginning, concentrated on writing useful programs, and went into details only

after the students had learned enough to use those details productively.

The results were dramatic: After one day in the classroom, our students were able to write

programs that had taken them most of the week in the old course. Moreover, their frustration

vanished.Abstraction

Our approach is possible only because C++, and our understanding of it, has had time to

mature. That maturity has let us ignore many of the low-level ideas that were the mainstay of

earlier C++ programs and programmers.

The ability to ignore details is characteristic of maturing technologies. For example, early

automobiles broke down so often that every driver had to be an amateur mechanic. It would

have been foolhardy to go for a drive without knowing how to get back home even if

something went wrong. Today's drivers don't need detailed engineering knowledge in order to

use a car for transportation. They may wish to learn the engineering details for other reasons,

but that's another story entirely.

We define abstraction as selective ignorance—concentrating on the ideas that are relevant to

the task at hand, and ignoring everything else—and we think that it is the most important idea

in modern programming. The key to writing a successful program is knowing which parts of

the problem to take into account, and which parts to ignore. Every programming language

offers tools for creating useful abstractions, and every successful programmer knows how to

use those tools.

We think, abstractions are so useful that we've filled this book with them. Of course, we don't

usually call them abstractions directly, because they come in so many forms. Instead, we refer

to functions, data structures, classes, and inheritance—all of which are abstractions. Not only

do we refer to them, but we use them throughout the book.

If abstractions are well designed and well chosen, we believe that we can use them even if we

don't understand all the details of how they work. We do not need to be automotive engineers

to drive a car, nor do we need to understand everything about how C++ works before we can

use it.

Coverage

If you are serious about C++ programming, you need to know everything in this book— even

though this book doesn't tell you everything you need to know.

This statement is not as paradoxical as it sounds. No book this size can contain everything

you'll ever need to know about C++, because different programmers and applications require

different knowledge. Therefore, any book that covers all of C++—such as Stroustrup's The

C++ Programming Language (Addison-Wesley, 2000)—will inevitably tell you a lot that you

don't need to know. Someone else will need it, even if you don't.

On the other hand, many parts of C++ are so universally important that it is hard to be

productive without understanding them. We have concentrated on those parts. It is possible to

write a wide variety of useful programs using only the information in this book. Indeed, one of

our reviewers, who is the lead programmer for a substantial commercial system written in

C++, told us that this book covers essentially all of the facilities that he uses in his work.

Using these facilities, you can write true C++ programs—not C++ programs in the style of C,

or any other language. Once you have mastered the material in this book, you will know

enough to figure out what else you want to learn, and how to go about it. Amateur telescope

makers have a saying that it is easier to make a 3-inch mirror and then to make a 6-inch

mirror than to make a 6-inch mirror from scratch.

We cover only standard C++, and ignore proprietary extensions. This approach has the

advantage that the programs that we teach you to write will work just about anywhere.

However, it also implies that we do not talk about how to write programs that run in windowing

environments, because such programs are invariably tied to a specific environment, and often

to a specific vendor. If you want to write programs that will work only in a particular

environment, you will have to turn elsewhere to learn how to do so— but don't put this book

down quite yet! Because our approach is universal, you will be able to use everything that you

learn here in whatever environments you use in the future. By all means, go ahead and read

that book about GUI applications that you were considering—but please read this one first.

A note to experienced C and C++ programmers

When you learn a new programming language, you may be tempted to write programs in a

style that is familiar from the languages that you already know. Our approach seeks to avoid

that temptation by using high-level abstractions from the C++ standard library right from the

start. If you are already an experienced C or C++ programmer, this approach contains some

good news and some bad news—and it's the same news.

The news is that you are likely to be surprised at how little of your knowledge will help you

understand C++ as we present it. You will have more to learn at first than you might expect

(which is bad), but you will learn more quickly than you might expect (which is good). In

particular, if you already know C++, you probably learned first how to program in C, which

means that your C++ programming style is built on a C foundation. There is nothing wrong

with that approach, but our approach is so different that we think you'll see a side of C++ that

you haven't seen before.

Of course, many of the syntactic details will be familiar, but they're just details. We treat the

important ideas in a completely different order from what you've probably encountered. For

example, we don't mention pointers or arrays until Chapter 10, and we're not even going to

discuss your old favorites, printf and malloc, at all. On the other hand, we start talking about

the standard-library string class in Chapter 1. When we say we're adopting a new approach,

we mean it!

Structure of this book

You may find it convenient to think of this book as being in two parts. The first part, through

Chapter 7, concentrates on programs that use standard-library abstractions. The second part,

starting with Chapter 8, talks about defining your own abstractions.

Presenting the library first is an unusual idea, but we think it's right. Much of the C++

language—especially the harder parts—exists mostly for the benefit of library authors. Library

users don't need to know those parts of the language at all. By ignoring those parts of the

language until the second part of the book, we make it possible to write useful C++ programs

much more quickly than if we had adopted a more conventional approach.

Once you have understood how to use the library, you will be ready to learn about the

low-level facilities on which the library is built, and how to use those facilities to write your own

libraries. Moreover, you will have a feeling for how to make a library useful, and when to avoid

writing new library code altogether.

Although this book is smaller than many C++ books, we have tried to use every important idea

at least twice, and key ideas more than that. As a result, many parts of the book refer to other

parts. These references look like §39.4.3/857, which refers to text on page 857 that is part of

section 39.4.3—or at least it would do so if this book had that many sections or pages. The

first time we explain each idea, we mention it in bold italic type to make it easy to find and to

call your attention to it as an important point.

Every chapter (except the last) concludes with a section called Details. These sections serve

two purposes: They make it easy to remember the ideas that the chapter introduced, and they

cover additional, related material that we think you will need to know eventually. We suggest

that you skim these sections on first reading, and refer back to them later as needed.

The two appendices summarize and elucidate the important parts of the language and library

at a level of detail that we hope will be useful when you are writing programs.

Getting the most out of this book

Every book about programming includes example programs, and this one is no different. In

order to understand how these programs work, there is no substitute for running them on a

computer. Such computers abound, and new ones appear constantly—which means that

anything we might say about them would be inaccurate by the time you read these words.

Therefore, if you do not yet know how to compile and execute a C++ program, please visit

http://www.acceleratedcpp.com and see what we have to say there. We will update that

website from time to time with information and advice about the mechanics of running C++

programs. The site also offers machine-readable versions of some of the example programs,

and other information that you might find interesting.

Acknowledgments

We would like to thank the people without whom this book would have been impossible. It

owes much of its form to our reviewers: Robert Berger, Dag Brück, Adam Buchsbaum,

Stephen Clamage, John Kalb, Jeffrey Oldham, David Slayton, Bjarne Stroustrup, Albert

Tenbusch, Bruce Tetelman, and Clovis Tondo. Many people from Addison-Wesley

http://www.acceleratedcpp.com

participated in its publication; the ones we know about are Tyrrell Albaugh, Bunny Ames, Mike

Hendrickson, Deborah Lafferty, Cathy Ohala, and Simone Payment. Alexander Tsiris checked

the Greek etymology in §13.2.2/236. Finally, the idea of starting with high-level programs grew

over many years, stimulated by the hundreds of students who have sat through our courses

and the thousands of people who have attended our talks.

Andrew Koenig Gillette, New Jersey

Barbara E. Moo June 2000

To our students,

who taught us

how to teach.

0

Getting started

Let us begin by looking at a small C++ program:

// a small C++ program

#include <iostream>

int main()

{

 std::cout << "Hello, world!" << std::endl;

 return 0;

}

Programmers often refer to such a program as a Hello, world! program. Despite its small size,

you should take the time to compile and run this program on your computer before reading

further. The program should write

Hello, world!

on the standard output, which will typically be a window on your display screen. If you have

trouble, find someone who already knows C++ and ask for help, or consult our Website,

http://www.acceleratedcpp.com, for advice.

 This program is useful because it is so simple that if you have trouble, the most likely

reasons are obvious typographical errors or misconceptions about how to use the

implementation. Moreover, thoroughly understanding even such a small program can teach a

surprising amount about the fundamentals of C++. In order to gain this understanding, we'll

look in detail at each line of the program.

0.1 Comments

The first line of our program is

// a small C++ program

The // characters begin a comment, which extends to the end of the line. The compiler

ignores comments; their purpose is to explain the program to a human reader. In this book,

http://www.acceleratedcpp.com

we shall put the text of each comment in italic type, to make it easier for you to distinguish

comments from other parts of the program.

0.2 #include

In C++, many fundamental facilities, such as input-output, are part of the standard library,

rather than being part of the core language. This distinction is important because the core

language is always available to all C++ programs, but you must explicitly ask for the parts of

the standard library that you wish to use.

 Programs ask for standard-library facilities by using #include directives. Such directives

normally appear at the beginning of a program. The only part of the standard library that our

program uses is input-output, which we request by writing

#include <iostream>

The name iostream suggests support for sequential, or stream, input-output, rather than

random-access or graphical input-output. Because the name iostream appears in an

#include directive and it is enclosed in angle brackets (< and >), it refers to a part of the C++

library called a standard header.

The C++ standard does not tell us exactly what a standard header is, but it does define each

header's name and behavior. Including a standard header makes the associated library

facilities available to the program, but exactly how the implementation does so is its concern,

not ours.

0.3 The main function

A function is a piece of program that has a name, and that another part of the program can

call, or cause to run. Every C++ program must contain a function named main. When we ask

the C++ implementation to run a program, it does so by calling this function.

The main function is required to yield an integer as its result, the purpose of which is to tell the

implementation whether the program ran successfully. A zero value indicates success; any

other value means there was a problem. Accordingly, we begin by writing

int main()

to say that we are defining a function named main that returns a value of type int. Here, int is

the name that the core language uses to describe integers. The parentheses after main

enclose the parameters that our function receives from the implementation. In this particular

example, there are no parameters, so there is nothing between the parentheses. We'll see

how to use main's parameters in §10.4/179.

0.4 Curly braces

We continue our definition of the main function by following the parentheses with a sequence

of statements enclosed in curly braces (often simply called braces):

int main()

{ // left brace

 // the statements go here

} // right brace

In C++, braces tell the implementation to treat whatever appears between them as a unit. In

this example, the left brace marks the beginning of the statements in our main function, and

the right brace marks their end. In other words, the braces indicate that all the statements

between them are part of the same function.

When there are two or more statements within braces, as there are in this function, the

implementation executes them in the order in which they appear.

0.5 Using the standard library for output

The first statement inside the braces does our program's real work:

std::cout << "Hello, world!" << std::endl;

This statement uses the standard library's output operator, <<, to write Hello, world! on the

standard output, and then to write the value of std::endl.

Preceding a name by std:: indicates that the name is part of a namespace named std. A

namespace is a collection of related names; the standard library uses std to contain all the

names that it defines. So, for example, the iostream standard header defines the names cout

and endl, and we refer to these names as std::cout and std::endl.

The name std::cout refers to the standard output stream, which is whatever facility the C++

implementation uses for ordinary output from programs. In a typical C++ implementation

under a windowing operating system, std::cout will denote the window that the

implementation associates with the program while it is running. Under such a system, the

output written to std::cout will appear in the associated window.

Writing the value of std::endl ends the current line of output, so that if this program were to

produce any more output, that output would appear on a new line.

0.6 The return statement

A return statement, such as

return 0;

ends execution of the function in which it appears, and passes the value that appears

between the return and the semicolon (0 in this example) back to the program that called the

function that is returning. The value that is returned must have a type that is appropriate for

the type that the function says it will return. In the case of main, the return type is int and the

program to which main returns is the C++ implementation itself. Therefore, a return from

main must include an integer-valued expression, which is passed back to the implementation.

Of course, there may be more than one point at which it might make sense to terminate a

program; such a program may have more than one return statement. If the definition of a

function promises that the function returns a value of a particular type, then every return

statement in the function must return a value of an appropriate type.

0.7 A slightly deeper look

This program uses two additional concepts that permeate C++: expressions and scope. We

will have much more to say about these concepts as this book progresses, but it is worthwhile

to begin with some of the basics here.

An expression asks the implementation to compute something. The computation yields a

result, and may also have side effects-that is, it may affect the state of the program or the

implementation in ways that are not directly part of the result. For example, 3+4 is an

expression that yields 7 as its result, and has no side effects, and

std::cout << "Hello, world!" << std::endl

is an expression that, as its side effect, writes Hello, world! on the standard output stream

and ends the current line.

An expression contains operators and operands, both of which can take on many forms. In our

Hello, world! expression, the two << symbols are operators, and std::cout, "Hello, world! "

and std::endl are operands.

Every operand has a type. We shall have much more to say about types, but essentially, a

type denotes a data structure and the meanings of operations that make sense for that data

structure. The effect of an operator depends on the types of its operands.

Types often have names. For example, the core language defines int as the name of a type

that represents integers, and the library defines std::ostream as the type that provides

stream-based output. In our program, std::cout has type std::ostream.

The << operator takes two operands, and yet we have written two << operators and three

operands. How can this be? The answer is that << is left-associative, which, loosely

speaking, means that when << appears twice or more in the same expression, each << will

use as much of the expression as it can for its left operand, and as little of it as it can for its

right operand. In our example, the first << operator has "Hello, world! " as its right operand

and std::cout as its left operand, and the second << operator has std::endl as its right

operand and std::cout << "Hello, world! " as its left operand. If we use parentheses to clarify

the relationship between operands and operators, we see that our output expression is

equivalent to

(std::cout << "Hello, world!") << std::endl

Each << behaves in a way that depends on the types of its operands. The first << has

std::cout, which has type std::ostream, as its left operand. Its right operand is a string literal,

which has a mysterious type that we shall not even discuss until §10.2/176. With those

operand types, << writes its right operand's characters onto the stream that its left operand

denotes, and its result is its left operand.

The left operand of the second << is therefore an expression that yields std::cout, which has

type std::ostream; the right operand is std::endl, which is a manipulator. The key property of

manipulators is that writing a manipulator on a stream manipulates the stream, by doing

something other than just writing characters to it. When the left operand of << has type

std::ostream and the right operand is a manipulator, << does whatever the manipulator says

to do to the given stream, and returns the stream as its result. In the case of std::endl, that

action is to end the current line of output.

The entire expression therefore yields std::cout as its value, and, as a side effect, it writes

Hello, world! on the standard output stream and ends the output line. When we follow the

expression by a semicolon, we are asking the implementation to discard the value-which

action is appropriate, because we are interested only in the side effects.

The scope of a name is the part of a program in which that name has its meaning. C++ has

several different kinds of scopes, two of which we have seen in this program.

The first scope that we used is a namespace, which, as we've just seen, is a collection of

related names. The standard library defines all of its names in a namespace named std, so

that it can avoid conflicts with names that we might define for ourselves-as long as we are not

so foolish as to try to define std. When we use a name from the standard library, we must

specify that the name we want is the one from the library; for example, std::cout means cout

as defined in the namespace named std.

The name std::cout is a qualified name, which uses the :: operator. This operator is also

known as the scope operator. To the left of the :: is the (possibly qualified) name of a scope,

which in the case of std::cout is the namespace named std. To the right of the :: is a name

that is defined in the scope named on the left. Thus, std::cout means "the name cout that is in

the (namespace) scope std."

Curly braces form another kind of scope. The body of main-and the body of every function-is

itself a scope. This fact is not too interesting in such a small program, but it will be relevant to

almost every other function we write.

0.8 Details

Although the program we've written is simple, we've covered a lot of ground in this chapter.

We intend to build on what we've introduced here, so it is important for you to be sure that you

understand this chapter fully before you continue.

To help you do so, this chapter-and every chapter except Chapter 16-ends with a section

called Details and a set of exercises. The Details sections summarize and occasionally

expand on the information in the text. It is worth looking at each Details section as a reminder

of the ideas that the chapter introduced.

Program structure: C++ programs are usually in free form, meaning that spaces are

required only when they keep adjacent symbols from running together. In particular, newlines

(i.e., the way in which the implementation represents the change from one line of the program

to the next) are just another kind of space, and usually have no additional special meaning.

Where you choose to put spaces in a program can make it much easier-or harder-to read.

Programs are normally indented to improve readability.

 There are three entities that are not free-form:

string literals

characters enclosed in double quotes; may not span lines

#include name

must appear on a line by themselves (except for comments)

// comments

// followed by anything; ends at the end of the current line

A comment that begins with /* is free-form; it ends with the first subsequent */ and can span

multiple lines.

Types define data structures and operations on those data structures. C++ has two kinds of

types: those built into the core language, such as int, and those that are defined outside the

core language, such as std::ostream.

Namespaces are a mechanism for grouping related names. Names from the standard library

are defined in the namespace called std.

String literals begin and end with double quotes ("); each string literal must appear entirely on

one line of the program. Some characters in string literals have special meaning when

preceded by a backslash (\):

\n newline character

\t tab character

\b backspace character

\" treats this symbol as part of the string rather than as the string terminator

\' same meaning as ' in string literals, for consistency with character literals (§1.2/14)

\\ includes a \ in the string, treating the next character as an ordinary character

We'll see more about string literals in §10.2/176 and §A.2.1.3/302.

Definitions and headers: Every name that a C++ program uses must have a corresponding

definition. The standard library defines its names in headers, which programs access through

#include. Names must be defined before they are used; hence, a #include must precede the

use of any name from that header. The <iostream> header defines the library's input-output

facilities.

The main function: Every C++ program must define exactly one function, named main, that

returns an int. The implementation runs the program by calling main. A zero return from main

indicates success; a nonzero return indicates failure. In general, functions must include at

least one return statement and are not permitted to fall off the end of the function. The main

function is special: It may omit the return; if it does so, the implementation will assume a zero

return value. However, explicitly including a return from main is good practice.

Braces and semicolons: These inconspicuous symbols are important in C++ programs.

They are easy to overlook because they are small, and they are important because forgetting

one typically evokes compiler diagnostic messages that may be hard to understand.

A sequence of zero or more statements enclosed in braces is a statement, called a block,

which is a request to execute the constituent statements in the order in which they appear.

The body of a function must be enclosed in braces, even if it is only a single statement. The

statements between a pair of matching braces constitute a scope.

An expression followed by a semicolon is a statement, called an expression statement,

which is a request to execute the expression for its side effects and discard its result. The

expression is optional; omitting it results in a null statement, which has no effect.

Output: Evaluating std::cout << e writes the value of e on the standard-output stream, and

yields std::cout, which has type ostream, as its value in order to allow chained output

operations.

Exercises

0-0. Compile and run the Hello, world! program.

0-1. What does the following statement do?

3 + 4;

0-2. Write a program that, when run, writes

This (") is a quote, and this (\) is a backslash.

0-3. The string literal "\t" represents a tab character; different C++ implementations display

tabs in different ways. Experiment with your implementation to learn how it treats tabs.

0-4. Write a program that, when run, writes the Hello, world! program as its output.

0-5. Is this a valid program? Why or why not?

#include <iostream>

int main() std::cout << "Hello, world!" << std::endl;

0-6. Is this a valid program? Why or why not?

#include <iostream>

int main() {{{{{{ std::cout << "Hello, world!" << std::endl; }}}}}}

0-7. What about this one?

#include <iostream>

int main()

{

 /* This is a comment that extends over several lines

 because it uses /* and */ as its starting and ending delimiters */

 std::cout << "Does this work?" << std::endl;

 return 0;

}

0-8. ...and this one?

#include <iostream>

int main()

{

 // This is a comment that extends over several lines

 // by using // at the beginning of each line instead of using /*

 // or */ to delimit comments.

 std::cout << "Does this work?" << std::endl;

 return 0;

}

0-9. What is the shortest valid program?

0-10. Rewrite the Hello, world! program so that a newline occurs everywhere that whitespace

is allowed in the program.

1

Working with strings

Chapter 0 looked closely at a tiny program, which we used to introduce surprisingly many

fundamental C++ ideas: comments, standard headers, scopes, namespaces, expressions,

statements, string literals, and output. This chapter continues our overview of the

fundamentals by writing similarly simple programs that use character strings. In the process,

we'll learn about declarations, variables, and initialization, as well as something about input

and the C++ string library. The programs in this chapter are so simple that they do not even

require any control structures, which we will cover in Chapter 2.

1.1 Input

Once we can write text, the logical next step is to read it. For example, we can modify the

Hello, world! program to say hello to a specific person:

// ask for a person's name, and greet the person

#include <iostream>

#include <string>

int main()

{

 // ask for the person's name

 std::cout << "Please enter your first name: ";

 // read the name

 std::string name; // define name

 std::cin >> name; // read into

 // write a greeting

 std::cout << "Hello, " << name << "!" << std::endl;

 return 0;

}

When we execute this program, it will write

Please enter your first name:

on the standard output. If we respond, for example,

Vladimir

then the program will write

Hello, Vladimir!

Let's look at what's going on. In order to read input, we must have a place to put it. Such a

place is called a variable. A variable is an object that has a name. An object, in turn, is a part

of the computer's memory that has a type. The distinction between objects and variables is

important because, as we'll see in §3.2.2/45, §4.2.3/65, and §10.6.1/183, it is possible to have

objects that do not have names.

If we wish to use a variable, we must tell the implementation what name to give it and what

type we want it to have. The requirement to supply both a name and a type makes it easier for

the implementation to generate efficient machine code for our programs. The requirement

also lets the compiler detect misspelled variable names-unless the misspelling happens to

match one of the names that our program said it intended to use.

In this example, our variable is named name, and its type is std::string. As we saw in §0.5/3

and §0.7/5, the use of std:: implies that the name, string, that follows it is part of the standard

library, not part of the core language or of a nonstandard library. As with every part of the

standard library, std::string has an associated header, namely <string>, so we've added an

appropriate #include directive to our program.

 The first statement,

std::cout << "Please enter your first name: ";

should be familiar by now: It writes a message that asks for the user's name. An important

part of this statement is what isn't there, namely the std::endl manipulator. Because we did

not use std::endl, the output does not begin a new line after the program has written its

message. Instead, as soon as it has written the prompt, the computer waits-on the same

line-for input. The next statement,

std::string name; // define name

is a definition, which defines our variable named name that has type std::string. Because

this definition appears within a function body, name is a local variable, which exists only

while the part of the program within the braces is executing. As soon as the computer reaches

the }, it destroys the variable name, and returns any memory that the variable occupied to

the system for other uses. The limited lifetime of local variables is one reason that it is

important to distinguish between variables and other objects.

Implicit in the type of an object is its interface-the collection of operations that are possible on

an object of that type. By defining name as a variable (a named object) of type string, we are

implicitly saying that we want to be able to do with name whatever the library says that we

can do with strings.

One of those operations is to initialize the string. Defining a string variable implicitly initializes

it, because the standard library says that every string object starts out with a value. We shall

see shortly that we can supply a value of our own when we create a string. If we do not do so,

then the string starts out containing no characters at all. We call such a string an empty or

null string.

Once we have defined name, we execute

std::cin >> name; // read into name

which is a statement that reads from std::cin into name. Analogous with its use of the <<

operator and std::cout for output, the library uses the >> operator and std::cin for input. In

this example, >> reads a string from the standard input and stores what it read in the object

named name. When we ask the library to read a string, it begins by discarding whitespace

characters (space, tab, backspace, or the end of the line) from the input, then reads

characters into name until it encounters another whitespace character or end-of-file.

Therefore, the result of executing std::cin >> name is to read a word from the standard input,

storing in name the characters that constitute the word.

The input operation has another side effect: It causes our prompt, which asks for the user's

name, to appear on the computer's output device. In general, the input-output library saves its

output in an internal data structure called a buffer, which it uses to optimize output operations.

Most systems take a significant amount of time to write characters to an output device,

regardless of how many characters there are to write. To avoid the overhead of writing in

response to each output request, the library uses the buffer to accumulate the characters to

be written, and flushes the buffer, by writing its contents to the output device, only when

necessary. By doing so, it can combine several output operations into a single write.

There are three events that cause the system to flush the buffer. First, the buffer might be full,

in which case the library will flush it automatically. Second, the library might be asked to read

from the standard input stream. In that case, the library immediately flushes the output buffer

without waiting for the buffer to become full. The third occasion for flushing the buffer is when

we explicitly say to do so.

When our program writes its prompt to cout, that output goes into the buffer associated with

the standard output stream. Next, we attempt to read from cin. This read flushes the cout

buffer, so we are assured that our user will see the prompt.

Our next statement, which generates the output, explicitly instructs the library to flush the

buffer. That statement is only slightly more complicated than the one that wrote the prompt.

Here we write the string literal "Hello, " followed by the value of the string variable name, and

finally by std::endl. Writing the value of std::endl ends the line of output, and then flushes the

buffer, which forces the system to write to the output stream immediately.

Flushing output buffers at opportune moments is an important habit when you are writing

programs that might take a long time to run. Otherwise, some of the program's output might

languish in the system's buffers for a long time between when your program writes it and

when you see it.

1.2 Framing a name

So far, our program has been restrained in its greetings. We'd like to change that by writing a

more elaborate greeting, so that the input and output look like this:

Please enter your first name: Estragon

* *

* Hello, Estragon! *

* *

Our program will produce five lines of output. The first line begins the frame. It is a sequence

of * characters as long as the person's name, plus some characters to match the salutation

("Hello, "), plus a space and an * at each end. The line after that will be an appropriate

number of spaces with an * at each end. The third line is an *, a space, the message, a space,

and an *. The last two lines will be the same as the second and first lines, respectively.

A sensible strategy is to build up the output a piece at a time. First we'll read the name, then

we'll use it to construct the greeting, and then we'll use the greeting to build each line of the

output. Here is a program that uses that strategy to solve our problem:

// ask for a person's name, and generate a framed greeting

#include <iostream>

#include <string>

int main()

{

 std::cout << "Please enter your first name: ";

 std::string name;

 std::cin >> name;

 // build the message that we intend to write

 const std::string greeting = "Hello, " + name + "!";

 // build the second and fourth lines of the output

 const std::string spaces(greeting.size(), ' ');

 const std::string second = "* " + spaces + " *";

 // build the first and fifth lines of the output

 const std::string first(second.size(), '*');

 // write it all

 std::cout << std::endl;

 std::cout << first << std::endl;

 std::cout << second << std::endl;

 std::cout << "* " << greeting << " *" << std::endl;

 std::cout << second << std::endl;

 std::cout << first << std::endl;

 return 0;

}

First, our program asks for the user's name, and reads that name into a variable named

name. Then, it defines a variable named greeting that contains the message that it intends to

write. Next, it defines a variable named spaces, which contains as many spaces as the

number of characters in greeting. It uses the spaces variable to define a variable named

second, which will contain the second line of the output, and then the program constructs first

as a variable that contains as many * characters as the number of characters in second.

Finally, it writes the output, a line at a time.

The #include directives and the first three statements in this program should be familiar. The

definition of greeting, on the other hand, introduces three new ideas.

One idea is that we can give a variable a value as we define it. We do so by placing, between

the variable's name and the semicolon that follows it, an = symbol followed by the value that

we wish the variable to have. If the variable and value have different types-as §10.2/176

shows that strings and string literals do-the implementation will convert the initial value to the

type of the variable.

The second new idea is that we can use + to concatenate a string and a string literal-or, for

that matter, two strings (but not two string literals). We noted in passing in Chapter 0 that 3 +

4 is 7. Here we have an example in which + means something completely different. In each

case, we can determine what the + operator does by examining the types of its operands.

When an operator has different meanings for operands of different types, we say that the

operator is overloaded.

The third idea is that of saying const as part of a variable's definition. Doing so promises that

we are not going to change the value of the variable for the rest of its lifetime. Strictly

speaking, this program gains nothing by using const. However, pointing out which variables

will not change can make a program much easier to understand.

Note that if we say that a variable is const, we must initialize it then and there, because we

won't have the opportunity later. Note also that the value that we use to initialize the const

variable need not itself be a constant. In this example, we won't know the value of greeting

until after we have read a value into name, which obviously can't happen until we run the

program. For this reason, we cannot say that name is const, because we change its value by

reading into it.

One property of an operator that never changes is its associativity. We learned in Chapter 0

that << is left-associative, so that std::cout << s << t means the same as (std::cout << s) <<

t. Similarly, the + operator (and, for that matter, the >> operator) is also left-associative.

Accordingly, the value of "Hello, " + name + "!" is the result of concatenating "Hello, " with

name, and concatenating the result of that concatenation with "!". So, for example, if the

variable name contains Estragon, then the value of "Hello, " + name + "!" is Hello,

Estragon!

At this point, we have figured out what we are going to say, and saved that information in the

variable named greeting. Our next job is to build the frame that will enclose our greeting. In

order to do so, we introduce three more ideas in a single statement:

std::string spaces(greeting.size(), ' ');

When we defined greeting, we used an = symbol to initialize it. Here, we are following spaces

by two expressions, which are separated by a comma and enclosed in parentheses. When we

use the = symbol, we are saying explicitly what value we would like the variable to have. By

using parentheses in a definition, as we do here, we tell the implementation to construct the

variable-in this case, spaces-from the expressions, in a way that depends on the type of the

variable. In other words, in order to understand this definition, we must understand what it

means to construct a string from two expressions.

How a variable is constructed depends entirely on its type. In this particular case, we are

constructing a string from-well, from what? Both expressions are of forms that we haven't

seen before. What do they mean?

The first expression, greeting.size(), is an example of calling a member function. In effect,

the object named greeting has a component named size, which turns out to be a function,

and which we can therefore call to obtain a value. The variable greeting has type std::string,

which is defined so that evaluating greeting.size() yields an integer that represents the

number of characters in greeting.

The second expression, ' ', is a character literal. Character literals are completely distinct

from string literals. A character literal is always enclosed in single quotes; a string literal is

always enclosed in double quotes. The type of a character literal is the built-in type char; the

type of a string literal is much more complicated, and we shall not explain it until §10.2/176. A

character literal represents a single character. The characters that have special meaning

inside a string literal have the same special meaning in a character literal. Thus, if we want ' or

\, we must precede it by \. For that matter, '\n', '\t', '\"', and related forms work analogously to

the way we saw in Chapter 0 that they work for string literals.

To complete our understanding of spaces, we need to know that when we construct a string

from an integer value and a char value, the result has as many copies of the char value as the

value of the integer. So, for example, if we were to define

std::string stars(10, '*');

then stars.size() would be 10, and stars itself would contain **********.

Thus, spaces contains the same number of characters as greeting, but all of those characters

are blanks.

Understanding the definition of second requires no new knowledge: We concatenate " * ", our

string of spaces, and " *" to obtain the second line of our framed message. The definition of

first requires no new knowledge either; it gives first a value that contains as many *

characters as the number of characters in second.

The rest of the program should be familiar; all it does is write strings in the same way we did in

§1.1/9.

1.3 Details

Types:

char

Built-in type that holds ordinary characters as defined by the implementation.

wchar_t

Built-in type intended to hold "wide characters," which are big enough to

hold characters for languages such as Japanese.

The string type is defined in the standard header <string>;. An object of type string contains

a sequence of zero or more characters. If n is an integer, c is a char, is is an input stream,

and os is an output stream, then the string operations include

std::string s;

Defines s as a variable of type std::string that is initially empty.

std::string t = s;

Defines t as a variable of type std::string that initially contains a copy

of the characters in s, where s can be either a string or a string literal.

std::string z(n, c);

Defines z as a variable of type std::string that initially contains n copies

of the character c. Here, c must be a char, not a string or a string literal.

os << s

Writes the characters contained in s, without any formatting changes, on the

output stream denoted by os. The result of the expression is os.

is >> s

Reads and discards characters from the stream denoted by is until encountering

a character that is not whitespace. Then reads successive characters

from is into s, overwriting whatever value s might have had, until the next

character read would be whitespace. The result is is.

s + t

The result of this expression is an std::string that contains a copy of the

characters in s followed by a copy of the characters in t. Either s or t, but

not both, may be a string literal or a value of type char.

s.size()

The number of characters in s.

Variables can be defined in one of three ways:

std::string hello = "Hello"; // define the variable with an explicit initial value

std::string stars(100, '*'); // construct the variable

 // according to its type and the given expressions

std::string name; // define the variable with an implicit initialization,

 // which depends on its type

Variables defined inside a pair of curly braces are local variables/which exist only while

executing the part of the program within the braces. When the implementation reaches the }, it

destroys the variables, and returns any memory that they occupied to the system. Defining a

variable as const promises that the variable's value, will not change during its lifetime. Such a

variable must be initialized as part of its definition, because there is no way to do so later.

Input: Executing std::cin >> v discards any whitespace characters in the standard input

stream, then reads from the standard input into variable v. It returns std::cin, which has type

istream, in order to allow chained input operations.

Exercises

1-0. Compile, execute, and test the programs in this chapter.

1-1. Are the following definitions valid? Why or why not?

const std::string hello = "Hello";

const std::string message = hello + ", world" + "!";

1-2. Are the following definitions valid? Why or why not?

const std::string exclam = "!";

const std::string message = "Hello" + ", world" + exclam;

1-3. Is the following program valid? If so, what does it do? If not, why not?

#include <iostream>

#include <string>

int main()

{

 { const std::string s = "a string";

 std::cout << s << std::endl; }

 { const std::string s = "another string";

 std::cout << s << std::endl; }

 return 0;

}

1-4. What about this one? What if we change }} to };} in the third line from the end?

#include <iostream>

#include <string>

int main()

{

 { const std::string s = "a string";

 std::cout << s << std::endl;

 { const std::string s = "another string";

 std::cout << s << std::endl; }}

 return 0;

}

1-5. Is this program valid? If so, what does it do? If not, say why not, and rewrite it to be valid.

#include <iostream>

#include <string>

int main()

{

 { std::string s = "a string";

 { std::string x = s + ", really";

 std::cout << s << std::endl; }

 std::cout << x << std::endl;

 }

 return 0;

}

1-6. What does the following program do if, when it asks you for input, you type two names

(for example, Samuel Beckett)? Predict the behavior before running the program, then try it.

#include <iostream>

#include <string>

int main()

{

 std::cout << "What is your name? ";

 std::string name;

 std::cin >> name;

 std::cout << "Hello, " << name

 << std::endl << "And what is yours? ";

 std::cin >> name;

 std::cout << "Hello, " << name

 << "; nice to meet you too!" << std::endl;

 return 0;

}

2

Looping and counting

In §1.2/11, we developed a program that writes a formatted frame around a greeting. In this

chapter, we're going to make the program more flexible so that we can change the size of the

frame without rewriting the program.

Along the way, we'll start learning about arithmetic in C++, and how C++ supports loops and

conditions, and we'll explore the related idea of loop invariants.

2.1 The problem

The program in §1.2/12 wrote a greeting with a frame around it. For example, if our user gave

us the name Estragon, our program would write

* *

* Hello, Estragon! *

* *

The program built up the output a line at a time. It defined variables named first and second

to contain the first and second lines of the output, and wrote the greeting itself, surrounded by

some characters, as the third line. We didn't need separate variables for the fourth or fifth

output lines, because those were the same as the second and first lines respectively.

This approach has a major shortcoming: Each line of the output has a part of the program-and

a variable-that corresponds to it. Therefore, even a simple change to the output format, such

as removing the spaces between the greeting and the frame, would require rewriting the

program. We would like to produce a more flexible form of output without having to store each

line in a local variable.

We will approach this problem by generating each character of the output separately, except

for the greeting itself, which we already have available as a string. What we shall discover is

that there is no need to store the output characters in variables, because once we have

written a character, we don't need it any more.

2.2 Overall structure

We'll begin by reviewing the part of the program that we don't have to rewrite:

#include <iostream>

#include <string>

int main()

{

 // ask for the person's name

 std::cout << "Please enter your first name: ";

 // read the name

 std::string name;

 std::cin >> name;

 // build the message that we intend to write

 const std::string greeting = "Hello, " + name + "!";

 // we have to rewrite this part...

 return 0;

}

As we rewrite the part of the program that the we have to rewrite this part... comment

represents, we shall already be in a context that defines name, greeting, and the relevant

names from the standard library. We will build up the new version of the program a piece at a

time, and then, in §2.5.4/29, we'll put all the pieces together.

2.3 Writing an unknown number of rows

We can think of our output as a rectangular array of characters, which we must write one row

at a time. Although we don't know how many rows it has, we do know how to compute the

number of rows.

The greeting takes up one row, as do the top and bottom rows of the frame. We've accounted

for three rows so far. If we know how many blank rows we intend to leave between the

greeting and the frame, we can double that number and add three to obtain the total number

of rows in the output:

// the number of blanks surrounding the greeting

const int pad = 1;

// total number of rows to write

const int rows = pad * 2 + 3;

We want to make it easy to find the part of our program that defines the number of blanks, so

we give that number a name. The variable called pad represents the amount of padding

around the frame. Having defined pad, we use it in computing rows, which will control how

many rows we write.

The built-in type int is the most natural type to use for integers, so we've chosen that type for

pad and rows. We also said that both variables are const, which we know from §1.2/13 is a

promise that we will not change the value of either pad or rows.

Looking ahead, we intend to use the same number of blanks on the left and right sides as on

the top and bottom, so one variable will serve for all four sides. If we are careful to use this

variable every time we want to refer to the number of blanks, changing the size of the frame

will require only changing the program to give the variable a different value.

We have computed how many rows we need to write; our next problem is to do so:

// separate the output from the input

std::cout << std::endl;

// write rows rows of output

int r = 0;

// invariant: we have written r rows so far

while (r != rows) {

 // write a row of output (as we will describe in §2.4/22)

 std::cout << std::endl;

 ++r;

}

We start, as we did in §1.2/12, by writing a blank line, so that there will be some space

between the input and the output. The rest of this fragment contains so many new ideas that

we need to look at it closely. Once we've understood how it works, we'll think about how to

write each individual row.

2.3.1 The while statement

Our program controls how many rows of output it writes by using a while statement, which

repeatedly executes a given statement as long as a given condition is true. A while statement

has the form

while (condition)

 statement

The statement is often called the while body.

The while statement begins by testing the value of the condition. If the condition is false, it

does not execute the body at all. Otherwise, it executes the body once, after which it tests the

condition again, and so on. The while alternates between testing the condition and executing

the body until the condition is false, at which point execution continues after the end of the

entire while statement.

Loosely speaking, we can think of the while statement in our example as saying, "As long as

the value of r is not equal to rows, do whatever is within the { }."

It is conventional to put the while body on a separate line and indent it, to make programs

easier to read. The implementation doesn't stop us from writing

while (condition) statement

but if we do so, we should think about whether we might be making life harder for other people

who might read our program.

Note that there is no semicolon after statement in this description. Either the statement is

indeed just a statement, or it is a block, which is a sequence of zero or more statements

enclosed in { }. If the statement is just an ordinary statement, it will end with a semicolon of its

own, so there's no need for another one. If it is a block, the block's } marks the end of the

statement, so again there's no need for a semicolon. Because a block is a sequence of

statements enclosed by braces, we know from §0.7/5 that a block is a scope.

The while begins by testing its condition, which is an expression that appears in a context

where a truth value is required. The expression r != rows is an example of a condition. This

example uses the inequality operator, !=, to compare r and rows. Such an expression has

type bool, which is a built-in type that represents truth values. The two possible values of type

bool are true and false, with the obvious meanings.

The other new facility in this program is the last statement in the while body, which is

++r;

The ++ is the increment operator, which has the effect of incrementing-adding 1 to-the

variable r. We could have written

r = r + 1;

instead, but incrementing an object is so common that a special notation for doing so is useful.

Moreover, as we shall see in §5.1.2/79, the idea of transforming a value into its immediate

successor, in contrast with computing an arbitrary value, is so fundamental to abstract data

structures that it deserves a special notation for that reason alone.

2.3.2 Designing a while statement

Determining exactly what condition to write in a while statement is sometimes difficult.

Similarly, it can be hard to understand precisely what a particular while statement does. It is

not too hard to see that the while statement in §2.3/19 will write a number of output rows that

depends on the value of rows, but how can we be confident that we know exactly how many

rows the program will write? For example, how do we know whether the number will be rows,

rows - 1, rows + 1, or something else entirely? We could trace through the while by hand,

noting the effect of each statement's execution on the state of the program, but how do we

know that we haven't made a mistake along the way?

There is a useful technique for writing and understanding while statements that relies on two

key ideas-one about the definition of a while statement, and the other about the behavior of

programs in general.

The first idea is that when a while finishes, its condition must be false-otherwise the while

wouldn't have finished. So, for example, when the while in §2.3/19 finishes, we know that r !=

rows is false and, therefore, that r is equal to rows.

The second idea is that of a loop invariant, which is a property that we assert will be true

about a while each time it is about to test its condition. We choose an invariant that we can

use to convince ourselves that the program behaves as we intend, and we write the program

so as to make the invariant true at the proper times. Although the invariant is not part of the

program text, it is a valuable intellectual tool for designing programs. Every useful while

statement that we can imagine has an invariant associated with it. Stating the invariant in a

comment can make a while much easier to understand.

To make this discussion concrete, we will look again at the while statement in §2.3/19. The

comment immediately before the while says what the invariant is: We have written r rows of

output so far.

To determine that this invariant is correct for this program fragment, we must verify that the

invariant is true each time the while is about to test its condition. Doing so requires us to verify

that the invariant will be true at two specific points in the program.

The first point is just before the while tests its condition for the first time. It is easy to verify the

invariant at this point in our example: Because we have written no rows of output so far, it is

obvious that setting r to 0 makes the invariant true.

The second point is just before we reach the end of the while body. If the invariant is true

there, it will be true the next time the while tests the condition. Therefore, the invariant will be

true every time.

In exchange for writing our program so that it meets these two requirements-causing the

invariant to be true before the while starts, and again at the end of the while body-we can be

confident that the invariant is true not only each time the while tests the condition, but also

after the while finishes. Otherwise, the invariant would have had to be true at the beginning of

one of the iterations of the while body and false afterward-and we have already arranged for

that to be impossible.

Here is a summary of what we know about our program fragment:

// invariant: we have written r rows so far

int r = 0;

// setting r to 0 makes the invariant true

while (r != rows) {

 // we can assume that the invariant is true here

 // writing a row of output makes the invariant false

 std::cout << std::endl;

 // incrementing r makes the invariant true again

 ++r;

}

// we can conclude that the invariant is true here

The invariant for our while is that we have written r rows of output so far. When we define r,

we give it an initial value of 0. At this point, we haven't written anything at all. Setting r to 0

obviously makes the invariant true, so we have met the first requirement.

To meet the second requirement, we must verify that whenever the invariant is true when the

while is about to test its condition, a trip through the condition and body will leave the invariant

true at the end of the body.

Writing a row of output causes the invariant to become false, because r is no longer the

number of rows we have written. However, incrementing r to account for the row that was

written will make the invariant true again. Doing so makes the invariant true at the end of the

body, so we have met the second requirement.

Because both requirements are true, we know that after the while finishes, we have written r

rows. Moreover, we have already seen that r == rows. Together, these two facts imply that

rows is the total number of rows that we have written.

The strategy that we used to understand this loop will come in handy in a variety of contexts.

The general idea is to find an invariant that states a relevant property of the variables that the

loop involves (we have written r rows), and to use the condition to ensure that when the loop

completes, those variables will have useful values (r == rows). The loop body's job is then to

manipulate the relevant variables so as to arrange for the condition to be false eventually,

while maintaining the truth of the invariant.

2.4 Writing a row

Now that we understand how to write a given number of rows, we can turn our attention to

writing a single row. In other words, we can start filling in the part of the program represented

by the write a row of output comment in §2.3/19.

We begin by observing that all the output lines are the same length. If we think of the output

as a rectangular array, then that length is the number of columns in the array. We can

compute that number by adding twice the padding to the length of the greeting, and then

adding two for the asterisks at the ends:

const std::string::size_type cols = greeting.size() + pad * 2 + 2;

The easy part of reading this definition is to see that we've said that cols is const, thereby

promising that the value of cols will not change after we have defined it. The harder part to

understand is that we have defined cols using an unfamiliar type, namely

std::string::size_type. We know that the first :: is the scope operator and that the qualified

name std::string means the name string from the namespace std. The second :: similarly

says that we want the name size_type from the class string. Like namespaces and blocks,

classes define their own scopes. The std::string type defines size_type to be the name of the

appropriate type for holding the number of characters in a string. Whenever we need a local

variable to contain the size of a string, we should use std::string::size_type as the type of that

variable.

The reason that we have given cols a type of std::string::size_type is to ensure that cols is

capable of containing the number of characters in greeting, no matter how large that number

might be. We could simply have said that cols has type int, and indeed, doing so would

probably work. However, the value of cols depends on the size of the input to our program,

and we have no control over how long that input might be. It is conceivable that someone

might give our program a string so long that an int is insufficient to contain its length.

The int type is sufficient for rows because the number of rows depends only on the value of

pad, which we control. Every C++ implementation is required to allow every int variable to

take on values up to at least 32767, which is plenty. Nevertheless, whenever we define a

variable that contains the size of a particular data structure, it is a good habit to use the type

that the library defines as being appropriate for that specific purpose.

It is impossible for a string to contain a negative number of characters. Accordingly,

std::string::size_type is an unsigned type-objects of that type are incapable of containing

negative values. This property does not affect the programs in this chapter, but we shall see

later on in §8.1.3/142 that it can be critically important.

Having figured out how many characters to write, we can use another while statement to write

them:

std::string::size_type c = 0;

// invariant: we have written c characters so far in the current row

while (c != cols) {

 // write one or more characters

 // adjust the value of c to maintain the invariant

}

This while behaves analogously to the one in §2.3/19, except for one difference in the body:

This time we have said write one or more characters instead of writing exactly one row as we

did in §2.3/19. There is no reason that we have to write only a single character each time

through the body. As long as we write at least one character, we will ensure progress. All we

have to do is ensure that the total number of characters we write on this row is exactly cols.

2.4.1 Writing border characters

Our remaining problem is to figure out what characters to write. We can solve part of this

problem by noting that if we are on the first or last row, or on the first or last column, then we

know that we should write an asterisk. Moreover, we can use our knowledge of the loop

invariants to determine whether it is time to write an asterisk.

For example, if r is zero, we know from the invariant that we have not yet written any rows,

which means that we are writing part of the first row. Similarly, if r is equal to rows - 1, we

know that we have written rows - 1 rows already, so we must now be writing part of the last

row. We can use analogous reasoning to conclude that if c is zero, then we are writing part of

the first column, and if c is equal to cols - 1, we are writing part of the last column. Using this

knowledge, we can fill in more of our program:

// invariant: we have written c characters so far in the current row

while (c != cols) {

 if (r == 0 || r == rows - 1 || c == 0 || c == cols - 1) {

 std::cout << "*";

 } else {

 // write one or more nonborder characters

 // adjust the value of c to maintain the invariant

}

This statement introduces so many new ideas that it requires detailed explanation.

2.4.1.1 if statements

The while body consists of a block (§2.3.1/19) that contains an if statement, which we use to

determine whether it is time to write an asterisk. An if statement can take either of two forms:

if (condition)

 statement

or, as used here,

if (condition)

 statement1

else

 statement2

As with the while statement, the condition is an expression that yields a truth value. If the

condition is true, then the program executes the statement that follows the if. In the second

form of the if statement, if the condition is false, then the program executes the statement that

follows the else.

It is worth noting, just as with our description of the form of the while statement, that the

formatting that we use to illustrate the if statement is merely conventional. However, readers

will find it much easier if code follows formatting conventions such as the ones that we've

used in the examples in this book.

2.4.1.2 Logical operators

What about the condition itself?

r == 0 || r == rows - 1 || c == 0 || c == cols - 1

This condition is true if r is 0 or rows - 1, or if c is 0 or cols - 1. The condition uses two new

operators, the == operator and the || operator. C++ programs test for equality by using the ==

symbol, to distinguish it from the assignment operator =. Thus, r == 0 yields a bool that

indicates whether the value of r is equal to 0. The logical-or operator, written as ||, yields true

if either of its operands is true.

The relational operators have lower precedence than the arithmetic operators. In expressions

that contain more than one operator, precedence defines how the operands group. For

example,

r == rows - 1

means

r == (rows - 1)

rather than

(r == rows) - 1

because the arithmetic operator - has higher precedence than the relational operator ==. In

other words, we are subtracting 1 from rows and comparing the result with r, which, in this

program, is what we wanted. We can override precedence by enclosing in parentheses a

subexpression that we want to use as a single operand. For example, if we really wanted to

execute (r == rows) - 1, we could do so by including the parentheses as shown. This

expression would compare r with rows and subtract 1 from the result, yielding either 0 or -1

depending on whether r was equal to rows.

The logical-or operator tests whether either of its operands is true. Its form is

condition1 || condition2

where, as usual, condition1 and condition2 are conditions-expressions that yield truth values.

The || expression yields a bool, which is true if either of the conditions is true.

The || operator has lower precedence than the relational operators, and, like most C++ binary

operators, is left-associative. Moreover, it has a property that most other C++ operators do not

share: If a program finds that the left operand of || is true, it does not evaluate the right

operand at all. This property is often called short-circuit evaluation, and as we shall see in

§5.6/89, it can have a crucial effect on how we write our programs.

Because || is left-associative, and because of the relative precedence of ||,== ,and -,

r == 0 || r == rows - 1 || c == 0 || c == cols - 1

means the same as it would if we were to place all of its subexpressions in parentheses:

((r == 0 || r == (rows - 1)) || c == 0) || c == (cols - 1)

In order to evaluate this latter expression using the short-circuit strategy, the program first

evaluates the left operand of the outermost ||, which is

(r == 0 || r == (rows - 1)) || c == 0

To do so, it must first evaluate the left operand of this inner ||, which is

r == 0 || r == (rows - 1)

which, in turn, means evaluating

r == 0

If r is equal to 0, then each of the expressions

r == 0 || r == (rows - 1)

(r == 0 || r == (rows - 1)) || c == 0

((r == 0 || r == (rows - 1)) || c == 0) || c == (cols - 1)

must be true. If r is nonzero, the next step is to compare r with rows - 1. If that test fails, then

the program will compare c with zero, and if that fails, it will compare c with cols - 1 to

determine the final result.

In other words, when we write a series of conditions separated by || operators, we are asking

the program to test each of these conditions in turn. If any of the inner conditions is true, then

the whole condition is true; otherwise, the whole condition is false. Each || operator stops as

soon as it can determine its result, so if any of the inner conditions is true, the subsequent

conditions go untested. If we step back from the details, we should be able to see that these

four equality tests are checking whether we are in the first row, the last row, the first column,

or the last column, and, therefore, that the if statement writes an asterisk if we're in the top or

bottom row, or if we're in the first or last column. Otherwise, it does something else, which we

must now define.

2.4.2 Writing nonborder characters

It is now time to write the statements that correspond to the comments that say

// write one or more nonborder characters

// adjust the value of c to maintain the invariant

in the program fragment in §2.4.1/23. These statements must deal with the characters that are

not part of the border. It should be easy to see that each of these characters is either a space

or part of the greeting. The only problem is figuring out which one it is, and what to do about it.

We begin by testing whether we are about to write the first character of the greeting, which we

do by finding if we're in the correct row and on the correct column within that row. The row we

seek is the one after we've written the initial row of asterisks, followed by pad additional rows.

The appropriate column comes after we have written the initial asterisk on this row, followed

by pad spaces. Our knowledge of the invariants tells us that we're on the right row when r is

equal to pad + 1, and be at the appropriate column when c is equal to pad + 1.

In other words, to determine whether we are about to write the first character of the greeting,

we must check whether r and c are both equal to pad + 1. If we've reached the right place to

write the greeting, we'll do so; otherwise, we'll write a space instead. In both cases, we have

to remember to update c appropriately:

if (r == pad + 1 && c == pad + 1) {

 std::cout << greeting;

 c += greeting.size();

} else {

 std::cout << " ";

}

The condition inside the if statement uses the logical-and operator. As with the || operator,

the && operator tests two conditions and yields a truth value. It is left-associative and uses a

short-circuit evaluation strategy. Unlike the || operator, the && operator yields true only if both

conditions are true. If either condition is false, the result of && is false. The second condition

will be tested if and only if the first condition is true.

If the test succeeds, then it's time to write the greeting. In doing so, we falsify our invariant,

because c is no longer equal to the number of characters we have written on this row. We

make our invariant true again by adjusting the value of c to account for the characters that we

have written. The expression that updates c uses another new operator, called the

compound-assignment operator, to adjust c to account for the number of characters in the

name when we wrote it. Such a compound assignment is a shorthand way of adding the right-

and left-hand sides together and storing the result in the left-hand side. In other words, if we

write c += greeting.size(), that statement has the same effect as if we had written c = c +

greeting.size().

The remaining possibility is that we're not on the border, and we're not about to write the

greeting. In that case, we need to write a space and increment c to make the invariant true

again, which we do in the else branch of the if statement.

2.5 The complete framing program

At this point, we have revised the entire program, but the code is scattered enough to be hard

to find. Therefore, we shall show the whole program again. However, before we do so, we

want to shorten the program in three ways.

The first abbreviation will be a kind of declaration that lets us say once and for all that a given

name comes from the standard library. Doing so will allow us to avoid saying std:: in so many

places. The second abbreviation is a shorthand way of writing a particularly common kind of

while statement. Finally, we can shorten the program slightly by incrementing c in one place

instead of two.

2.5.1 Abbreviating repeated uses of std::

By now, you are probably tired of seeing-and writing-std:: in front of every name from the

standard library. Saying std:: explicitly was a good way of reminding you which names came

from the standard library, but you should have a pretty good idea of what they are at this

point.

C++ offers a way of saying that a particular name should always be interpreted as coming

from a particular namespace. For example, by writing

using std::cout;

we can say that we intend to use the name cout to mean std::cout exclusively, and that we

do not intend to define anything named cout ourselves. Once we have done so, we can say

cout instead of std::cout.

Logically enough, such a declaration is called a using-declaration. The name that it mentions

behaves similarly to other names. For example, if a using-declaration appears within braces,

the name that it defines has its given meaning from where it is defined to the closing brace.

From now on, we'll write using-declarations to shorten our programs.

2.5.2 Using for statements for compactness

Let's look again at the control structures that we used in the program in §2.3/19. If we look

only at the program's outermost structure, we see

int r = 0;

while (r != rows) {

 // stuff that doesn't change the value of r

 ++r;

}

This particular form of while appears frequently. Before it starts, we define and initialize a local

variable, which we test in the condition. The while body adjusts the value of the variable so

that eventually the condition will fail. Because this kind of control structure is so common, the

language provides a shorthand way of writing it:

for (int r = 0; r != rows; ++r) {

 // stuff that doesn't change the value of r

}

Either of these examples will cause r to take on a sequence of values, the first of which is 0,

and the last of which is rows - 1. We can think of 0 as being the beginning of a range, and

rows as being the off-the-end value for the range. Such a range is called a half-open range,

and is often written as [begin, off-the-end). The deliberately unbalanced brackets [) remind

the reader that the range is asymmetric. So, for example, the range [1, 4) contains 1, 2, and

3, but not 4. Similarly, we say that r takes on the values in [0, rows). A for statement has the

following form:

for (init-statement condition; expression)

 statement

The first line is often known as the for header. It controls the statement that follows, which is

often called the for body. The init-statement must be either a definition (§1.1/10) or an

expression statement (§0.8/6). Because each of these kinds of statement ends with its own

semicolon, there is no additional semicolon between the init-statement and the condition.

A for statement begins by executing the init-statement part of the for header, which it does

only once, at the beginning of the for. Typically, the init-statement defines and initializes the

loop control variable, which will be tested as part of the condition. If a variable is defined in the

init-statement, it is destroyed on exit from the for, so it is inaccessible to code that follows the

for statement.

On every trip through the loop, including the first, the program evaluates the condition. If the

condition yields true, then it executes the for body. Having done so, it executes the

expression. It then repeats the test, continuing to execute the for body followed by the

expression in the for header until the test condition fails.

More generally, the meaning of a for statement is

{

 init-statement

 while (condition) {

 statement

 expression;

}

where we have been careful to enclose the init-statement and the while in extra braces,

thereby limiting the lifetime of any variables declared in the init-statement. Note particularly

the presence and absence of semicolons. We do not write a semicolon after the init-statement

or statement because they are statements, with their own semicolons if they need them. We

do include a semicolon after expression in order to turn it into a statement.

2.5.3 Collapsing tests

We can divide the code associated with the write one or more characters comment in §2.4/23

into three cases: We are writing a single asterisk, a space, or the entire greeting. As our

program stands, we adjust c to maintain our invariant after we write an asterisk, and we adjust

it again after we write a space. There's nothing wrong with doing so, but it is often possible to

change the order of tests in a program so as to make it possible to merge two or more

identical statements into one.

Because our three cases are mutually exclusive, we can test them in any order. If we begin by

first testing whether we are about to write the greeting, then we know that in the other two

cases, incrementing c suffices to maintain the invariant, so we can collapse the two

increments into one:

if (we are about to write the greeting) {

 cout << greeting;

 c += greeting.size();

} else {

 if (we are in the border)

 cout << "*";

 else

 cout << " ";

 ++c;

}

After collapsing the increments, we also find that two of our blocks are just single statements,

so we can drop two pairs of braces. Notice how the different indentation of ++c; draws

attention to the fact that it is executed regardless of whether we are in the border.

2.5.4 The complete framing program

If we put all the pieces together and use these three abbreviation techniques, we get the

following program:

#include <iostream>

#include <string>

// say what standard-library names we use

using std::cin; using std::endl;

using std::cout; using std::string;

int main()

{

 // ask for the person's name

 cout << "Please enter your first name: ";

 // read the name

 string name;

 cin >> name;

 // build the message that we intend to write

 const string greeting = "Hello, " + name + "!";

 // the number of blanks surrounding the greeting

 const int pad = 1;

 // the number of rows and columns to write

 const int rows = pad * 2 + 3;

 const string::size_type cols = greeting.size() + pad * 2 + 2;

 // write a blank line to separate the output from the input

 cout << endl;

 // write rows rows of output

 // invariant: we have written r rows so far

 for (int r = 0; r != rows; ++r) {

 string::size_type c = 0;

 // invariant: we have written c characters so far in the current row

 while (c != cols) {

 // is it time to write the greeting?

 if (r == pad + 1 && c == pad + 1) {

 cout << greeting;

 c += greeting.size();

 } else {

 // are we on the border?

 if (r == 0 || r == rows - 1 ||

 c == 0 || c == cols - 1)

 cout << "*";

 else

 cout << " ";

 ++c;

 }

 }

 cout << endl;

 }

 return 0;

}

2.6 Counting

Most experienced C++ programmers have a habit that may seem weird at first: Their

programs invariably begin counting from 0 rather than from 1. For example, if we reduce the

outer for loop of the program above to its essentials, we get

for (int r = 0; r != rows; ++r) {

 // write a row

}

We could have written this loop as

for (int r = 1; r <= rows; ++r) {

 // write a row

}

One version counts from 0 and uses != as its comparison; the other counts from 1 and uses

<= as its comparison. The number of iterations is the same in each case. Is there any reason

to prefer one form over the other?

One reason to count from 0 is that doing so encourages us to use asymmetric ranges to

express intervals. For example, it is natural to use the range [0, rows) to describe the first for

statement, as it is to use the range [1, rows] to describe the second one.

Asymmetric ranges are usually easier to use than symmetric ones because of an important

property: A range of the form [m, n) has n - m elements, and a range of the form [m, n] has n

- m + 1 elements. So, for example, the number of elements in [0, rows) is obvious (i.e., rows

- 0, or rows) but the number in [1, rows] is less so.

This behavioral difference between asymmetric and symmetric ranges is particularly evident

in the case of empty ranges: If we use asymmetric ranges, we can express an empty range

as [n, n), in contrast to [n, n-1] for symmetric ranges. The possibility that the end of a range

could ever be less than the beginning can cause no end of trouble in designing programs.

Another reason to count from 0 is that doing so makes loop invariants easier to express. In

our example, counting from 0 makes the invariant straightforward: We have written r rows of

output so far. What would be the invariant if we counted from 1?

One would be tempted to say that the invariant is that we are about to write the rth row, but

that statement does not qualify as an invariant. The reason is that the last time the while tests

its condition, r is equal to rows + 1, and we intend to write only rows rows. Therefore, we are

not about to write the rth row, so the invariant is not true!

Our invariant could be that we have written r - 1 rows so far. However, if that's our invariant,

why not simplify it by starting r at 0?

Another reason to count from 0 is that we have the option of using != as our comparison

instead of <=. This distinction may seem trivial, but it affects what we know about the state of

the program when a loop finishes. For example, if the condition is r != rows, then when the

loop finishes, we know that r == rows. Because the invariant says that we have written r rows

of output, we know that we have written exactly rows rows all told. On the other hand, if the

condition is r <= rows, then all we can prove is that we have written at least rows rows of

output. For all we know, we might have written more.

If we count from 0, then we can use r != rows as a condition when we want to ensure that

there are exactly rows iterations, or we can use r < rows if we care only that the number of

iterations is rows or more. If we count from 1, we can use r <= rows if we want at least rows

iterations-but what if we want to ensure that rows is the exact number? Then we must test a

more complicated condition, such as r == rows + 1. This extra complexity offers no

compensating advantage.

2.7 Details

Expressions: C++ inherits a rich set of operators from C, several of which we have already used. In addition, as we've already seen with

the input and output operators, C++ programs can extend the core language by defining what it means to apply built-in operators to

objects of class type. Correctly understanding complicated expressions is a fundamental prerequisite to effective programming in C++.

Understanding such expressions requires understanding

How the operands group, which is controlled by the precedence and associativity of the operators used in the expression

How the operands will be converted to other types, if at all

The order in which the operands are evaluated

Different operators have different precedence. Most of the operators are left-associative, although the assignment operators and the

operators taking a single argument are right-associative. We list the most common operators here-regardless of whether we've used

them in this chapter. We've ordered them by precedence from highest to lowest, with a double line separating groupings with the same

precedence.

x.y The member y of object x

x[y] The element in object x indexed by y

x++ Increments x, returning the original value of x

x-- Decrements x, returning the original value of x

++x Increments x, returning the incremented value

--x Decrements x, returning the decremented value

!x Logical negation. If x is true then !x is false.

x * y Product of x and y

x / y Quotient of x and y. If both operands are integers,

the implementation chooses whether to round toward zero or - ∞

x % y Remainder of x divided by y, equivalent to x - ((x / y) * y)

x + y Sum of x and y

x - y Result of subtracting y from x

x >> y For integral x and y, x shifted right by y bits; y must be non-negative.

If x is an istream, reads from x into y

x << y For integral x and y, x shifted left by y bits; y must be non-negative.

If x is an ostream, writes y onto x.

x relop y Relational operators yield a bool indicating the truth of the relation.

The operators (<, >, <= , and >=) have their obvious meanings.

x == y Yields a bool indicating whether x equals y

x != y Yields a bool indicating whether x is not equal to y

x && y Yields a bool indicating whether both x and y are true.

Evaluates y only if x is true.

x || y Yields a bool indicating whether either x or y is true.

Evaluates y only if x is false.

x = y Assign the value of y to x, yielding x as its result.

x op= y Compound assignment operators; equivalent to x = x op y,

where op is an arithmetic or shift operator.

x ? y1 : y2 Yields y1 if x is true; y2 otherwise.

Evaluates only one of y1 and y2.

There is usually no guarantee as to the order in which an expression's operands are evaluated. Because the order of evaluation is not

fixed, it is important to avoid writing a single expression in which one operand depends on the value of another operand. We'll see an

example in §4.1.5/60.

Operands will be converted to the appropriate type when possible. Numeric operands in expressions or relational expressions are

converted by the usual arithmetic conversions described in detail in §A.2.4.4/304. Basically, the usual arithmetic conversions

attempt to preserve precision. Smaller types are converted to larger types, and signed types are converted to unsigned. Arithmetic

values may be converted to bool: A value of 0 is considered false; any other value is true. Operands of class type are converted as

specified by the type. We'll see in Chapter 12 how to control such conversions.

Types:

bool

Built-in type representing truth values; may be either true or false

unsigned

Integral type that contains only non-negative values

short

Integral type that must hold at least 16 bits

long

Integral type that must hold at least 32 bits

size_t

Unsigned integral type (from <cstddef>) that can hold any object's size

string::size_type

Unsigned integral type that can hold the size of any string

Half-open ranges include one but not both of their endpoints. For example, [1, 3) includes 1 and 2, but not 3.

Condition: An expression that yields a truth value. Arithmetic values used in conditions are converted to bool: Nonzero values convert

to true; zero values convert to false.

Statements:

using namespace-name::name;

Defines name as a synonym for namespace-name::name.

type-name name;

Defines name with type type-name.

type-name name = value;

Defines name with type type-name initialized as a copy of value.

type-name name(args);

Defines name with type type-name constructed as appropriate for the given arguments in args.

expression;

Executes expression for its side effects.

{ statement(s) }

Called a block. Executes the sequence of zero or more statement(s) in order. May

be used wherever a statement is expected. Variables defined inside the braces have

scope limited to the block.

while (condition) statement

If condition is false, do nothing; otherwise, execute statement and then repeat the

entire while.

for(init-statement condition; expression) statement

Equivalent to { init-statement while (condition) {statement expression; } }.

if (condition) statement

Executes statement if condition is true.

if (condition) statement else statement2

Executes statement if condition is true, otherwise executes statement2.

Each else is associated with the nearest matching if.

return val;

Exits the function and returns val to its caller.

Exercises

2-0. Compile and run the program presented in this chapter.

2-1. Change the framing program so that it writes its greeting with no separation from the frame.

2-2. Change the framing program so that it uses a different amount of space to separate the sides from the greeting than it uses to

separate the top and bottom borders from the greeting.

2-3. Rewrite the framing program to ask the user to supply the amount of spacing to leave between the frame and the greeting.

2-4. The framing program writes the mostly blank lines that separate the borders from the greeting one character at a time. Change the

program so that it writes all the spaces needed in a single output expression.

2-5. Write a set of "*" characters so that they form a square, a rectangle, and a triangle.

2-6. What does the following code do?

int i = 0;

while (i < 10) {

 i += 1;

 std::cout << i << std::endl;

}

2-7. Write a program to count down from 10 to -5 .

2-8. Write a program to generate the product of the numbers in the range [1, 10).

2-9. Write a program that asks the user to enter two numbers and tells the user which number is larger than the other.

2-10. Explain each of the uses of std:: in the following program:

int main() {

int k = 0;

 while (k != n) { // invariant: we have written k asterisks so far

 using std::cout;

 cout << "*";

 ++k;

 }

 std::cout << std::endl; // std:: is required here

 return 0;

}

3

Working with batches of data

The programs that we explored in Chapters 1 and 2 did little more than read a single string

and write it again, sometimes with decoration. Most problems are more complicated than such

simple programs can solve. Among the most common sources of complexity in programs is

the need to handle multiple pieces of similar data.

Our programs have already started doing so, in the sense that a string comprises multiple

characters. Indeed, it is exactly the ability to put an unknown number of characters into a

single object-a string-that makes these programs easy to write.

In this chapter, we'll look at more ways of dealing with batches of data, by writing a program

that reads a student's exam and homework grades and computes a final grade. Along the

way, we'll learn how to store all the grades, even if we don't know in advance how many

grades there are.

3.1 Computing student grades

Imagine a course in which each student's final exam counts for 40% of the final grade, the

midterm exam counts for 20%, and the average homework grade makes up the remaining

40%. Here is our first try at a program that helps students compute their final grades:

#include <iomanip>

#include <ios>

#include <iostream>

#include <string>

using std::cin; using std::setprecision;

using std::cout; using std::string;

using std::endl; using std::streamsize;

int main()

{

 // ask for and read the student's name

 cout << "Please enter your first name: ";

 string name;

 cin >> name;

 cout << "Hello, " << name << "!" << endl;

 // ask for and read the midterm and final grades

 cout << "Please enter your midterm and final exam grades: ";

 double midterm, final;

 cin >> midterm >> final;

 // ask for the homework grades

 cout << "Enter all your homework grades, "

 "followed by end-of-file: ";

 // the number and sum of grades read so far

 int count = 0;

 double sum = 0;

 // a variable into which to read

 double x;

 // invariant:

 // we have read count grades so far, and

 // sum is the sum of the first count grades

 while (cin >> x) {

 ++count;

 sum += x;

 }

 // write the result

 streamsize prec = cout.precision();

 cout << "Your final grade is " << setprecision(3)

 << 0.2 * midterm + 0.4 * final + 0.4 * sum / count

 << setprecision(prec) << endl;

 return 0;

}

As usual, we begin with #include directives and using-declarations for the library facilities that

we intend to use. These facilities include <iomanip> and <ios>, which we have not yet seen.

The <ios> header defines streamsize, which is the type that the input-output library uses to

represent sizes. The <iomanip> header defines the manipulator setprecision, which lets us

say how many significant digits we want our output to contain.

When we used endl, which is also a manipulator, we did not have to include the <iomanip>

header. The endl manipulator is used so often that its definition appears in <iostream>,

rather than in <iomanip>.

The program begins by asking for and reading the student's name, and the midterm and final

grades. Next, it asks for the student's homework grades, which it continues to read until it

encounters an end-of-file signal. Different C++ implementations offer their users different

ways of sending such a signal to a program, the most common way being to begin a new line

of input, hold down the control key, and press z (for computers running Microsoft Windows) or

d (for computers running the Unix or Linux systems).

While reading the grades, the program uses count to keep track of how many grades were

entered, and stores in sum a running total of the grades. Once the program has read all the

grades, it writes a greeting message, and reports the student's final grade. In doing so, it uses

count and sum to compute the average homework grade.

Much of this program should already be familiar, but there are several new usages, which we

will explain.

The first new idea occurs in the section that reads the student's exam grades:

cout << "Enter your midterm and final exam grades: ";

double midterm, final;

cin >> midterm >> final;

The first of these statements should be familiar: It writes a message, which, in this case, tells

the student what to do next. The next statement defines midterm and final as having type

double, which is the built-in type for double-precision floating-point numbers. There is also a

single-precision floating-point type, called float. Even though it might seem that float is the

appropriate type, it is almost always right to use double for floating-point computations.

These types' names date back to when memory was much more expensive than it is today.

The shorter floating-point type, called float, is permitted to offer as little precision as six

significant (decimal) digits or so, which is not even enough to represent the price of a house to

the nearest penny. The double type is guaranteed to offer at least ten significant digits, and

we know of no implementation that does not offer at least 15 significant digits. On modern

computers, double is usually much more accurate than float, and not much slower.

Sometimes, double is even faster.

Now that we have defined the midterm and final variables, we read values into them. Like the

output operator (§0.7/4), the input operator returns its left operand as its result. So, we can

chain input operations just as we chain output operations, so

cin >> midterm >> final;

has the same effect as

cin >> midterm;

cin >> final;

Either form reads a number from the standard input into midterm, and the next number into

final.

The next statement asks the student to enter homework grades:

cout << "Enter all your homework grades, "

 "followed by end-of-file: ";

A careful reading will reveal that this statement contains only a single <<, even though it

seems to be writing two string literals. We can get away with this because two or more string

literals in a program, separated only by whitespace, are automatically concatenated.

Therefore, this statement has exactly the same effect as

cout << "Enter all your homework grades, followed by end-of-file: ";

By breaking the string literal in two, we avoid lines in our programs that are too long to read

conveniently.

The next section of the code defines the variables that we'll use to hold the information that

we intend to read. Of these, the interesting part is

int count = 0;

double sum = 0;

Note that we give the initial value 0 to both sum and count. The value 0 has type int, which

means that the implementation must convert it to type double in order to use it to initialize

sum. We could have avoided this conversion by initializing sum to 0.0 instead of 0, but it

makes no practical difference in this context: Any competent implementation will do the

conversion during compilation, so there is no run-time overhead, and the result will be exactly

the same.

In this case, what's more important than the conversion is that we give these variables an

initial value at all. When we do not specify an initial value for a variable we are implicitly

relying on default-initialization. The initialization that happens by default depends on the

type of the variable. For objects of class type, the class itself says what initializer to use if

there is not one specified. For example, we noted in §1.1/10 that if we do not explicitly

initialize a string, then the string is implicitly initialized to be empty. No such implicit

initialization happens for local variables of built-in type.

Local variables of built-in type that are not explicitly initialized are undefined, which means

that the variable's value consists of whatever random garbage already happens to occupy the

memory in which the variable is created. It is illegal to do anything to an undefined value

except to overwrite it with a valid value. Many implementations do not detect the violations of

this rule, and allow access to undefined values. The result is almost always a crash or a

wrong result, because whatever is in memory by happenstance is almost never a correct

value; often it is a value that is invalid for the type.

Had we not given either sum or count an initial value, our program most likely would have

failed. The reason is that the first thing the program does with these variables is to use their

values: The program reads count in order to increment it, and it reads sum in order to add its

value to the one we just read. By the same token, we do not bother to give an initial value to

x, because the first thing we do with it is read into it, thereby obliterating any value we might

have given it.

The only new aspect of the while statement is the form of its condition:

// invariant:

// we have read count grades so far, and

// sum is the sum of the first count grades

while (cin >> x) {

 ++count;

 sum += x;

}

We already know that the while loop executes so long as the condition cin >> x succeeds.

We'll explore the details of what it means to treat cin >> x as a condition in §3.1.1/39, but for

now, what's important to know is that this condition succeeds if the most recent input request

(i.e., cin >> x) succeeded.

Inside the while, we use the increment and compound-assignment operators, both of which

we used in Chapter 2. From the discussion there we know that ++count adds 1 to count, and

that sum += x adds x to sum.

All that is left to explain is how the program does its output:

streamsize prec = cout.precision();

cout << "Your final grade is " << setprecision(3)

 << 0.2 * midterm + 0.4 * final + 0.4 * sum / count

 << setprecision(prec) << endl;

Our goal is to write the final grade with three significant digits, which we do by using

setprecision. Like endl, setprecision is a manipulator. It manipulates the stream by causing

subsequent output on that stream to appear with the given number of significant digits. By

writing setprecision(3), we ask the implementation to write grades with three significant digits,

generally two before the decimal point and one after.

By using setprecision, we change the precision of any subsequent output that might appear

on cout. Because this statement is at the end of the program, we know that there is no such

output. Nevertheless, we believe that it is wise to reset cout's precision to what it was before

we changed it. We do so by calling a member function (§1.2/14) of cout named precision.

This function tells us the precision that a stream uses for floating-point output. We use

setprecision to set the precision to 3, write the final grade, and then set the precision back to

the value that precision gave us. The expression that computes the grade uses several of the

arithmetic operators: * for multiplication, / for division, and + for addition, each of which has

the obvious meaning.

We could have used the precision member function to set the precision, by writing

// set precision to 3, return previous value

streamsize prec = cout.precision(3);

cout << "Your final grade is "

 << 0.2 * midterm + 0.4 * final + 0.4 * sum / count << endl;

// reset precision to its original value

cout.precision(prec);

However, we prefer to use the setprecision manipulator, because by doing so, we can

minimize the part of the program in which the precision is set to an unusual value.

3.1.1 Testing for end of input

Conceptually, the only really new part of this program is the condition in the while statement.

That condition implicitly uses an istream as the subject of the while condition:

while (cin >> x) {/*...*/}

The effect of this statement is to attempt to read from cin. If the read succeeds, x will hold the

value that we just read, and the while test also succeeds. If the read fails (either because we

have run out of input or because we encountered input that was invalid for the type of x), then

the while test fails, and we should not rely on the value of x.

Understanding how this code works is a bit subtle. We can start by remembering that the >>

operator returns its left operand, so that asking for the value of cin >> x is equivalent to

executing cin >> x and then asking for the value of cin. For example, we can read a single

value into x, and test whether we were successful in doing so, by executing

if (cin >> x) {/*...*/}

This statement has the same meaning as

cin >> x;

if (cin) { /* ... */ }

When we use cin >> x as a condition, we aren't just testing the condition; we are also reading

a value into x as a side effect. Now, all we need to do is figure out what it means to use cin as

a condition in a while statement.

Because cin has type istream, which is part of the standard library, we must look to the

definition of istream for the meaning of if (cin) or while (cin). The details of that definition turn

out to be complicated enough that we won't discuss it in detail until §12.5/222. However, even

without these details, we can already understand a useful amount of what is happening.

The conditions that we used in Chapter 2 all involved relational operators that directly yield

values of type bool. In addition, we can use expressions that yield values of arithmetic type as

conditions. When used in a condition, the arithmetic value is converted to a bool: Nonzero

values convert to true; zero values convert to false. For now, what we need to know is that

similarly, the istream class provides a conversion that can be used to convert cin into a value

that can be used in a condition. We don't yet know what type that value has, but we do know

that the value can be converted to bool. Accordingly, we know that the value can be used in a

condition. The value that this conversion yields depends on the internal state of the istream

object, which will remember whether the last attempt to read worked. Thus, using cin as a

condition is equivalent to testing whether the last attempt to read from cin was successful.

There are several ways in which trying to read from a stream can be unsuccessful:

We might have reached the end of the input file.

We might have encountered input that is incompatible with the type of the variable

that we are trying to read, such as might happen if we try to read an int and find

something that isn't a number.

The system might have detected a hardware failure on the input device.

In any of these cases, the effect is the same: Using this input stream as a condition will

indicate that the condition is false. Moreover, once we have failed to read from a stream, all

further attempts to read from that stream will fail until we reset the stream, which we'll learn

how to do in §4.1.3/57.

3.1.2 The loop invariant

Understanding the invariant (§2.3.2/20) for this loop requires special care, because the

condition in the while has side effects. Those side effects affect the truth of the invariant:

Successfully executing cin >> x makes the first part of the invariant-the part that says that we

have read count grades-false. Accordingly, we must change our analysis to account for the

effect that the condition itself might have on the invariant.

We know that the invariant was true before evaluating the condition, so we know that we have

already read count grades. If cin >> x succeeds, then we have now read count + 1 grades.

We can make this part of the invariant true again by incrementing count. However, doing so

falsifies the second part of the invariant-the part that says that sum is the sum of the first

count grades-because after we have incremented count, sum is now the sum of the first

count - 1 grades, not the first count grades. Fortunately, we can make the second part of the

invariant true by executing sum += x; so that the entire invariant will be true on subsequent

trips through the while.

If the condition is false, it means that our attempt at input failed, so we didn't get any more

data, and so the invariant is still true. As a result, we do not have to account for the condition's

side effects after the whi1e finishes.

3.2 Using medians instead of averages

The program that we've written so far has a design shortcoming: It throws away each homework

grade as soon as it has read it. Doing so is fine for computing averages, but what if we wanted to

use the median homework grade instead of the average?

The most straightforward way to find the median of a collection of values is to sort the values into

increasing (or decreasing) order and pick the middle one—or, if the number of values is even, take

the average of the two values nearest the middle. Medians are often more useful than averages,

because although they still account correctly for consistent performance, they won't cause a few

lousy grades to blow the whole course.

A bit of thinking should convince us that to compute medians, we must change our program

fundamentally. In order to find the median of an unknown number of values, we must store every

value until we have read them all. To find the average, we were able to store only the count and

running total of the items we'd read. The average was just the total divided by the count.

3.2.1 Storing a collection of data in a vector

To compute the median, we must read and store all the homework grades, then sort them, and

finally pick the middle one (or two). To do this computation conveniently and efficiently, we need a

way to

Store a number of values that we will read one at a time, without knowing in advance how

many values there are

Sort the values after we have read them all

Get at the middle value(s) efficiently

The standard library provides a type, named vector, that we can use to solve all these problems

easily. A vector holds a sequence of values of a given type, grows as needed to accommodate

additional values, and lets us get at each individual value efficiently.

Let's start rewriting our grading program by making it put the grades into a vector, instead of

computing the sum and throwing the grades away. The original version of that code looked like

// original program (excerpt):
int count = 0;

double sum = 0;

double x;

// invariant:

// we have read count grades so far, and

// sum is the sum of the first count grades
while (cin >> x) {

 ++count;

 sum += x;

}

This loop kept track of how many grades it read, and kept a running total of their value. The need to

keep both these variables in step with the values as we read them made the loop invariant relatively

complicated. In contrast, using a vector to store values as we read them is much simpler:

// revised version of the excerpt:
double x;

vector<double> homework;

// invariant: homework contains all the homework grades read so far
while (cin >> x)

 homework.push_back(x);

We haven't changed the basic structure of our code: It still reads values one at a time into x until it

encounters end-of-file or invalid input. What's different is what we do with those values.

Let's start with homework, which we define as having type vector<double>. A vector is a

container that holds a collection of values. All of the values in an individual vector are the same

type, but different vectors can hold objects of different types. Whenever we define a vector, we

must specify the type of the values that the vector will hold. Our definition of homework says that it

is a vector, which will hold values of type double.

The vector type is defined using a language feature called template classes. We'll see how to

define a template class in Chapter 11. For now, what's important is to realize that we can separate

what it means to be a vector from the particular type of the objects that the vector holds. We specify

the type of the objects inside angle brackets. For example, objects of type vector<double> are

vectors that hold objects of type double, objects of type vector<string> hold strings, and so on.

The while loop operates by reading values from the standard input and storing them in the vector.

As before, we read into x until we hit end-of-file or encounter input that is not a double. What is new

is

homework.push_back(x);

As with greeting.size() in §1.2/14, we can see that push_back is a member function, which is

defined as part of the vector type, and that we are asking that function to act on behalf of the object

named homework. We call that function, passing it x. What push_back does is append a new

element to the end of the vector. It gives that new element the value that we passed as the

argument to push_back. Thus, push_back pushes its argument onto the back of a vector. As a

side effect, it increases the size of the vector by one.

Because the push_back function is such a good match for what we're trying to do, it is trivial to see

that calling it will maintain our loop invariant. Therefore, it is clear that when we drop out of the

while, we will have read all the homework grades and stored them in homework, which is what we

wanted.

Next, we have to think about the output.

3.2.2 Generating the output

In the original version of the program from §3.1/35, we calculated the student's grade within the

output expression itself:

streamsize prec = cout.precision();

cout << "Your final grade is " << setprecision(3)

 << 0.2 * midterm + 0.4 * final + 0.4 * sum / count

 << setprecision(prec) << endl;

where final and midterm held the exam grades, and sum and count contained the sum of all the

homework grades and the count of how many grades were entered.

As we remarked in §3.2.1/41, the easiest way to calculate the median is to sort our data and then

find the middle value, or the average of the two middle values if we have an even number of

elements. We can make the computation easier to understand if we separate the computation of the

median from the code that writes the output.

In order to find the median, we begin by noting that we are going to need to know the size of the

homework vector at least twice: once to check whether the size is zero, and again to compute the

location of the middle element(s). To avoid having to ask for the size twice, we will store the size in

a local variable:

typedef vector<double>::size_type vec_sz;

vec_sz size = homework.size();

The vector type defines a type named vector<double>::size_type, and a function named size.

These members operate analogously to the ones in string: The type defined by size_type is an

unsigned type guaranteed sufficient to hold the size of the largest possible vector, and size()

returns a size_type value that represents the number of elements in the vector.

Because we need to know the size in two places, we will remember the value in a local variable.

Different implementations use different types to represent sizes, so we cannot write the appropriate

type directly and remain implementation-independent. For that reason, it is good programming

practice to use the size_type that the library defines to represent container sizes, which we do in

naming the type of size.

In this example, that type is unwieldy to write—and to read. To simplify our program, we have used

a language facility that we haven't encountered before, called a typedef. When we include the word

typedef as part of a definition, we are saying that we want the name that we define to be a synonym

for the given type, rather than a variable of that type. Thus, because our definition includes typedef,

it defines the name vec_sz as a synonym for vector<double>::size_type. Names defined via

typedef have the same scope as any other names. That is, we can use the name vec_sz as a

synonym for the size_type until the end of the current scope.

Once we know how to name the type of the value that homework.size() returns, we can store that

value in a local variable, named size, of the same type. It is worth noting that even though we are

using the name size for two different purposes, there is no conflict or ambiguity. The only way to

ask for the size of a vector is by putting a call to the size function on the right-hand side of a dot,

with a vector on the left-hand side. In other words, the size that is defined as a local variable is in a

different scope than the one that is an operation on vectors. Because these names are in different

scopes, the compiler (and the programmer) can know which size is intended.

Because it is meaningless to find the median of an empty dataset, our next job is to verify that we

have some data:

if (size == 0) {

 cout << endl << "You must enter your grades. "

 "Please try again." << endl;

 return 1;

}

We can detect this state of affairs by checking whether size is zero. If it is, the most sensible action

is to complain and stop the program. We do so by returning 1 to indicate failure. As discussed in

Chapter 0, the system presumes that if main returns 0, the program succeeded. Returning anything

else has an implementation-defined meaning, but most implementations treat any nonzero value as

failure.

Now that we have verified that we have data, we can begin computing the median. The first part of

doing so is to sort the data, which we do by calling a library function:

sort(homework.begin(), homework.end());

The sort function, defined in the <algorithm> header, rearranges the values in a container so that

they are in nondecreasing order. We say nondecreasing instead of increasing because some

elements might be equal to one another.

The arguments to sort specify the range of elements to be sorted. The vector class provides two

member functions, begin and end, for this kind of usage. We'll have much more to say about begin

and end in §5.2.2/81, but what is important for now is to know that homework.begin() denotes the

first element in the vector named homework, whereas homework.end() denotes (one past) the last

element in homework.

The sort function does its work in place: It moves the values of the container's elements around

rather than creating a new container to hold the results.

Once we have sorted homework, we need to find the middle element or elements:

vec_sz mid = size/2;

double median;

median = size % 2 == 0 ? (homework[mid] + homework[mid-1]) / 2

 : homework[mid];

We begin by dividing size by 2 in order to locate the middle of the vector. If the number of elements

is even, this division is exact. If the number is odd, then the result is the next lower integer.

Exactly how we compute the median depends on whether the number of elements is even or odd. If

it is even, the median is the average of the two elements closest to the middle. Otherwise, there is

an element in the middle, the value of which is the median.

The expression that assigns a value to median uses two new operators: the remainder operator,

%, and the conditional operator, often called the ? : operator.

The remainder operator, %, returns the remainder that results from dividing its left operand by its

right operand. If the remainder after dividing by 2 is 0, then the program has read an even number

of elements.

The conditional operator is shorthand for a simple if-then-else expression. First, it evaluates the

expression, size % 2 == 0, that precedes the ? part of the operator as a condition to obtain a bool

value. If the condition yields true, then the result is the value of the expression between the ? and

the : that follows; otherwise, the result is the value of the expression after the :. So, if we read an

even number of elements, we'll set median to the average of the two middle elements. If we read an

odd number, then we'll set median to homework[mid]. Analogous to && and ||, the ? : operator first

evaluates its leftmost operand. Based on the resulting value, it then evaluates exactly one of its

other operands.

The references to homework[mid] and homework[mid-1] show one way to access an element of a

vector. Every element of every vector has an integer, called its index, associated with it. So, for

example, homework[mid] is the element of homework with index mid. As you might suspect from

§2.6/30, the first element of the vector named homework is homework[0], and the last element is

homework[size - 1].

Each element is itself an (unnamed) object of the type stored in the container. So, homework[mid]

is an object of type double, on which we can invoke any of the operations that type double

supports. In particular, we can add two elements, and we can divide the resulting sum by 2 to get

the average value of the two objects.

Once we know how to access the elements of homework, we can see how the median computation

works. Assume first that size is even, so that mid is size / 2. Then there must be exactly mid

elements of homework on each side of the middle:

Because we know that each half of homework has exactly mid elements, it should be easy to see

that the indices of the two elements nearest the middle are mid - 1 and mid; the median is the

average of these elements.

If the number of elements is odd, then mid is really (size-1) / 2, because of truncation. In that case,

we can think of our sorted homework vector as two segments with mid elements each, separated

by a single element in the middle. That element is the median:

In either case, our median computation relies on the ability to access a vector element knowing only

its index.

Once we have computed the median, We need only compute and write the final grade:

streamsize prec = cout.precision();

cout << "Your final grade is " << setprecision(3)

 << 0.2 * midterm + 0.4 * final + 0.4 * median

 << setprecision(prec) << endl;

The final program isn't much more complicated than the program in §3,1/35, even though it does

much more work. In particular, even though our homework vector will grow as needed to

accommodate grades for as many homework assignments as our students can tolerate, our

program doesn't need to worry about obtaining the memory to store all those grades. The standard

library does all that work for us.

Here is the entire program. The only parts that we have not already mentioned are the #include

directives, the corresponding using-declarations, and a few more comments:

#include <algorithm>

#include <iomanip>

#include <ios>

#include <iostream>

#include <string>

#include <vector>

using std::cin; using std::sort;

using std::cout; using std::streamsize;

using std::endl; using std::string;

using std::setprecision; using std::vector;

int main()

{

 // ask for and read the student's name
 cout << "Please enter your first name: ";

 string name;

 cin >> name;

 cout << "Hello, " << name << "!" << endl;

 // ask for and read the midterm and final grades
 cout << "Please enter your midterm and final exam grades: ";

 double midterm, final;

 cin >> midterm >> final;

 // ask for and read the homework grades
 cout << "Enter all your homework grades, "

 "followed by end-of-file: ";

 vector<double> homework;

 double x;

 // invariant: homework contains all the homework grades read so far
 while (cin >> x)

 homework.push_back(x);

 // check that the student entered some homework grades
 typedef vector<double>::size_type vec_sz;

 vec_sz size = homework.size();

 if (size == 0) {

 cout << endl << "You must enter your grades. "

 "Please try again." << endl;

 return 1;

 }

 // sort the grades
 sort(homework.begin(), homework.end());

 // compute the median homework grade
 vec_sz mid = size/2;

 double median;

 median = size % 2 == 0 ? (homework[mid] + homework[mid-1]) / 2

 : homework[mid];

 // compute and write the final grade
 streamsize prec = cout.precision();

 cout << "Your final grade is " << setprecision(3)

 << 0.2 * midterm + 0.4 * final + 0.4 * median

 << setprecision(prec) << endl;

 return 0;

}

3.2.3 Some additional observations

This code contains some points that deserve particular attention. First, there's a bit more to know

about why we exit the program if homework is empty. Logically, taking the median of an empty

collection of values is undefined—we have no idea what it might mean. Therefore, exiting does the

right thing: If we don't know what to do, we might as well quit. But it is important to know what would

happen if we had continued execution. If the input were empty, and we neglected to test that we

had read at least one number, the code to compute the median would fail. Why?

If we had read no elements, then homework.size(), and therefore size, would be 0. Likewise, mid

would be 0. When we executed homework[mid], we would be looking at the first element (the one

indexed by 0) in homework. But there are no elements in homework! When we execute

homework[0], all bets are off as to what we get. vectors do not check whether the index is in range.

Such checking is up to the user.

The next important observation is that vector<double>::size_type, like all standard-library size

types, is an unsigned integral type. Such types are incapable of storing negative values at all;

instead, they store values modulo 2n, where n depends on the implementation. So, for example,

there would never be any point in checking whether homework.size() < 0, because that

comparison would always yield false.

Moreover, whenever ordinary integers and unsigned integers combine in an expression, the

ordinary integer is converted to unsigned. In consequence, expressions such as homework.size() -

100 yield unsigned results, which means that they, too, cannot be less than zero—even if

homework.size() < 100.

Finally, it is also worth noting that the execution performance of our program is actually quite good,

even though the vector<double> object grows as needed to accommodate its input, rather than

being allocated with the right size immediately.

We can be confident about the program's performance because the C++ standard imposes

performance requirements on the library's implementation. Not only must the library meet the

specifications for behavior, but it must also achieve well-specified performance goals. Every

standard-conforming C++ implementation must

Implement vector so that appending a large number of elements to a vector is no worse

than proportional to the number of elements

Implement sort to be no slower than nlog(n), where n is the number of elements being

sorted

The whole program is therefore guaranteed to run in nlog(n) time or better on any

standard-conforming implementation. In fact, the standard library was designed with a ruthless

attention to performance. C++ is designed for use in performance-critical applications, and the

emphasis on speed pervades the library as well.

3.3 Details

Local variables are default-initialized if they are defined without an explicit initializer.

Default-initialization of a built-in type means that the value is undefined. Undefined values

may be used only as the left-hand side of an assignment.

Type definitions:

typedef type name; Defines name as a synonym for type.

The vector type, defined in <vector>, is a library type that is a container that holds a

sequence of values of a specified type, vectors grow dynamically. Some important operations

are:

vector<T>::size_type

A type guaranteed to be able to hold the number of elements in the

largest possible vector.

v.begin()

Returns a value that denotes the first element in v.

v.end()

Returns a value that denotes (one past) the last element in v.

vector<T> v;

Creates an empty vector that can hold elements of type T.

v.push_back(e)

Grows the vector by one element initialized to e.

v[i]

Returns the value stored in position i.

v.size()

Returns the number of elements in v.

Other library facilities

sort(b, e)

Rearranges the elements defined by the range [b, e) into nondecreasing order. Defined in

<algorithm>.

max(el, e2)

Returns the larger of the expressions e1 and e2; e1 and e2 must have exactly the same

type. Defined in <algorithm>.

while (cin >> x)

Reads a value of an appropriate type into x and tests the state of the stream. If the stream is

in an error state, the test fails; otherwise, the test succeeds, and the body of the while is

executed.

s.precision(n)

Sets the precision of stream s to n for future output (or leaves it unchanged if n is omitted).

Returns the previous precision.

setprecision(n)

Returns a value that, when written on an output stream s, has the effect of calling

s.precision(n). Defined in <iomanip>.

streamsize

The type of the value expected by setprecision and returned by precision. Defined in

<ios>.

Exercises

3-0. Compile, execute, and test the programs in this chapter.

3-1. Suppose we wish to find the median of a collection of values. Assume that we have read

some of the values so far, and that we have no idea how many values remain to be read.

Prove that we cannot afford to discard any of the values that we have read. Hint: One proof

strategy is to assume that we can discard a value, and then find values for the unread—and

therefore unknown—part of our collection that would cause the median to be the value that we

discarded.

3-2. Write a program to compute and print the quartiles (that is, the quarter of the numbers

with the largest values, the next highest quarter, and so on) of a set of integers.

3-3. Write a program to count how many times each distinct word appears in its input.

3-4. Write a program to report the length of the longest and shortest string in its input.

3-5. Write a program that will keep track of grades for several students at once. The program

could keep two vectors in sync: The first should hold the student's names, and the second the

final grades that can be computed as input is read. For now, you should assume a fixed

number of homework grades. We'll see in §4.1.3/56 how to handle a variable number of

grades intermixed with student names.

3-6. The average-grade computation in §3.1/36 might divide by zero if the student didn't enter

any grades. Division by zero is undefined in C++, which means that the implementation is

permitted to do anything it likes. What does your C++ implementation do in this case? Rewrite

the program so that its behavior does not depend on how the implementation treats division

by zero.

4

Organizing programs and data

Although the program in §3.2.2/46 is larger than we would like, it would have been larger still without

vector, string, and sort. These library facilities, like others that we have used, share several

qualities: Each one

Solves a particular kind of problem

Is independent of most of the others

Has a name

Our own programs have the first of these qualities, but lack the others. This lack is fine for small

programs, but as we set out to solve larger problems, we will find that our solutions will become

unmanageable unless we break them into independent, named parts.

Like most programming languages, C++ offers two fundamental ways of organizing large programs:

functions (sometimes called subroutines) and data structures. In addition, C++ lets programmers

combine functions and data structures into a single notion called a class, which we'll explore starting

in Chapter 9.

Once we have learned how to use functions and data structures to organize our computations, we

also need the ability to divide our programs into files that we can compile separately and combine

after compilation. The last part of this chapter will show how C++ supports separate compilation.

4.1 Organizing computations

We shall begin by writing a function to calculate a student's final grade from the midterm and final

exam grades and overall homework grade. We'll assume that we've already calculated the overall

homework grade from the individual homework grades, which we have been computing as the

average or median. Aside from that assumption, this function will use the same policy as the one

that we've been using all along: Homework and the final exam contribute 40% each to the total, and

the midterm makes up the remaining 20%.

Whenever we do—or might do—a computation in several places, we should think about putting it in

a function. An obvious reason for doing so is that then we can use the function instead of redoing

the computation explicitly. Not only does using functions reduce our total programming effort, but

doing so also makes it easier for us to change the computation if we wish. For example, assume we

wanted to change our grading policy. If we had to hunt through every program we had ever written,

looking for the parts that dealt with grading, we would probably become discouraged quickly.

There is a more subtle advantage to using functions for such computations: A function has a name.

If we name a computation, we can think about it more abstractly—we can think more about what it

does and less about how it works. If we can identify important parts of our problems, and create

named pieces of our programs that correspond to those parts, then our programs will be easier to

understand and the problems easier to solve.

Here is a function that computes grades according to our policy:

// compute a student's overall grade from midterm and final exam grades and homework grade
double grade(double midterm, double final, double homework)

{

 return 0.2 * midterm + 0.4 * final + 0.4 * homework;

}

Until now, all the functions that we've defined have been named main. We define most other

functions similarly, by specifying the return type, followed first by the function name, next by a

parameter list enclosed in (), and, finally, by the function body, which is enclosed in { }. The rules

are more complicated for functions that return values that denote other functions; see §A.1.2/297 for

the full story.

In this example, the parameters are midterm, final, and homework, each of which has type double.

They behave like variables that are local to the function, which means that calling the function

creates them and returning from the function destroys them.

As with any other variables, we must define the parameters before using them. Unlike other

variables, defining them does not create them immediately; only calling the function creates them.

Therefore, whenever we call the function, we must supply corresponding arguments, which are

used to initialize the parameters when the function begins execution. For example, in §3.1/36 we

computed a grade by writing

cout << "Your final grade is " << setprecision(3)

 << 0.2 * midterm + 0.4 * final + 0.4 * sum / count

 << setprecision(prec) << endl;

If we had the grade function available, we could have written

cout << "Your final grade is " << setprecision(3)

 << grade(midterm, final, sum / count)

 << setprecision(prec) << endl;

Not only must we supply arguments that correspond to the parameters of the functions that we call,

but we must supply them in the same order. Accordingly, when we call the grade function, the first

argument must be the midterm grade, the second must be the final exam grade, and the third must

be the homework grade.

Arguments can be expressions, such as sum / count, not just variables. In general, each argument

is used to initialize the. corresponding parameter, after which the parameters behave like ordinary

local variables inside the function. So, for example, when we call grade(midterm, final, sum /

count), the grade function's parameters are initialized to copies of the arguments' values, and do

not refer directly to the arguments themselves. This behavior is often called call by value, because

the parameter takes on a copy of the value of the argument.

4.1.1 Finding medians

Another problem that we solved in §3.2.2/46, and that we can imagine wanting to solve in other

contexts, is finding the median of a vector. We'll see in §8.1.1/140 how to define a function that is

so general that it works with a vector of any type of value. For now, we'll limit our attention to

vector<double>.

To write our function, we'll start with the part of the program in §3.2.2/47 that computes medians,

and make a few changes:

// compute the median of a vector<double>

// note that calling this function copies the entire argument vector

double median(vector<double> vec)

{

 typedef vector<double>::size_type vec_sz;

 vec_sz size = vec.size();

 if (size == 0)

 throw domain_error("median of an empty vector");

 sort(vec.begin(), vec.end());

 vec_sz mid = size / 2;

 return size % 2 == 0 ? (vec[mid] + vec[mid-1]) / 2 : vec[mid];

}

One change is that we named our vector vec, rather than homework. After all, our function can

compute the median of anything, not just homework grades. We also eliminated the variable

median, because we no longer need it: We can return the median as soon as we've calculated it.

We are still using size and mid as variables, but now they are local to the median function and,

therefore, inaccessible (and irrelevant) elsewhere. Calling the median function will create these

variables, and returning from the function will destroy them. We define vec_sz as a local type name,

because we don't want to conflict with anyone who might want to use that name for another

purpose.

The most significant change is what we do if the vector is empty. In §3.2.2/46, we knew that we

would have to complain to whoever was running our program, and we also knew who that person

would be and what kind of complaint would make sense. In this revised version, on the other hand,

we don't know who is going to be using it, or for what purpose, so we need a more general way of

complaining. That more general way is to throw an exception if the vector is empty.

When a program throws an exception, execution stops in the part of the program in which the throw

appears, and passes to another part of the program, along with an exception object, which

contains information that the caller can use to act on the exception.

The most important part of the information that is passed is usually the mere fact that an exception

was thrown. That fact, along with the type of the exception object, is usually enough to let the caller

figure out what to do. In this particular example, the exception that we throw is domain_error, which

is a type that the standard library defines in header <stdexcept> for use in reporting that a

function's argument is outside the set of values that the function can accept. When we create a

domain_error object to throw, we can give it a string that describes what went wrong. The program

that catches the exception can use this string in a diagnostic message, as we shall see in §4.2.3/65.

There is one more detail about how functions behave that is important to understand. When we call

a function, we can think of the parameters as local variables whose initial values are the arguments.

If we do so, we can see that calling a function involves copying the arguments into the parameters.

In particular, when we call median, the vector that we use as an argument will be copied into vec.

In the case of the median function, it is useful to copy the argument to the parameter, even if doing

so takes significant time, because the median function changes the value of its parameter by calling

sort. Copying the argument prevents changes made by sort from propagating back to the caller.

This behavior makes sense, because taking the median of a vector should not change the vector

itself.

4.1.2 Reimplementing our grading policy

The grade function in §4.1/52 assumes that we already know the student's overall homework grade,

and not just the individual homework assignments' grades. How we obtain that grade is part of our

policy: We used the average in §3.1/36 and the median in §3.2.2/47. Accordingly, we might wish to

express this part of our grading policy in a function, along the same lines as we did in §4.1/52:

// compute a student's overall grade from midterm and final exam grades

// and vector of homework grades.

// this function does not copy its argument, because median does so for us.
double grade(double midterm, double final, const vector<double>& hw)

{

 if (hw.size() == 0)

 throw domain_error("student has done no homework");

 return grade(midterm, final, median(hw));

}

This function has three points of particular interest.

The first point is the type, const vector<double>&, that we specify for the third argument. This type

is often called "reference to vector of const double." Saying that a name is a reference to an object

says that the name is another name for the object. So, for example, if we write

vector<double> homework;

vector<double>& hw = homework; // hw is a synonym for homework

we are saying that hw is another name for homework. From that point on, anything we do to hw is

equivalent to doing the same thing to homework, and vice versa. Adding a const, as in

// chw is a read-only synonym for homework

const vector<double>& chw = homework;

still says that chw is another name for homework, but the const promises that we will not do

anything to chw that might change its value.

Because a reference is another name for the original, there is no such thing as a reference to a

reference. Defining a reference to a reference has the same effect as defining a reference to the

original object. For example, if we write

// hw1 and chw1 are synonyms for homework; chw1 is read-only
vector<double>& hw1 = hw;

const vector<double>& chw1 = chw;

then hw1 is another name for homework, just as hw is, and chw1, like chw, is another name for

homework that does not allow write access.

If we define a nonconst reference—a reference that allows writing—we cannot make it refer to a

const object or reference, because doing so would require permission that the const denies.

Therefore, we cannot write

vector<double>& hw2 = chw; // error: requests write access to chw

because we promised not to modify chw.

Analogously, when we say that a parameter has type const vector<double>&, we are asking the

implementation to give us direct access to the associated argument, without copying it, and also

promising that we won't change the parameter's value (which would otherwise change the argument

too). Because the parameter is a reference to const, we can call this function on behalf of both

const and nonconst vectors. Because the parameter is a reference, we avoid the overhead of

copying the argument.

The second point of particular interest about the grade function is that like the one in §4.1/52, it is

named grade—even though it calls the other grade function. The notion that we can have several

functions with the same name is called overloading, and figures prominently in many C++

programs. Even though we have two functions with the same name, there is no ambiguity, because

whenever we call grade, we will supply an argument list, and the implementation will be able to tell

from the type of the third argument which grade function we mean.

The third point is that we check whether homework.size() is zero, even though we know that

median will do so for us. The reason is that if median discovers that we are asking for the median

of an empty vector, it throws an exception that includes the message median of an empty vector.

This message is not directly useful to someone who is computing student grades. Therefore, we

throw our own exception, which we hope will give the user more of a clue as to what has gone

wrong.

4.1.3 Reading homework grades

Another problem that we have had to solve in several contexts is reading homework grades into a

vector.

There is a problem in designing the behavior of such a function: It needs to return two values at

once. One value is, of course, the homework grades that it read. The other is an indication of

whether the attempted input was successful.

There is no direct way to return more than one value from a function. One indirect way to do so is to

give the function a parameter that is a reference to an object in which it is to place one of its results.

This strategy is common for functions that read input, so we'll use it. Doing so will make our function

look like this:

// read homework grades from an input stream into a vector<double>

istream& read_hw(istream& in, vector<double>& hw) {

 // we must fill in this part

 return in;

}

In §4.1.2/54, we saw a program with a const vector<double>& parameter; now we're dropping the

const. A reference parameter without a const usually signals an intent to modify the object that is

the function's argument. For example, when we execute

vector<double> homework;

read_hw(cin, homework);

the fact that read_hw's second parameter is a reference should lead us to expect that calling

read_hw will change the value of homework.

Because we expect the function to modify its argument, we cannot call the function with just any

expression. Instead, we must pass an lvalue argument to a reference parameter. An lvalue is a

value that denotes a nontemporary object. For example, a variable is an lvalue, as is a reference, or

the result of calling a function that returns a reference. An expression that generates an arithmetic

value, such as sum / count, is not an lvalue.

Both of the parameters to read_hw are references, because we expect the function to change the

state of both arguments. We don't know the details of how cin works, but presumably the library

defines it as a data structure that stores everything the library needs to know about the state of our

input file. Reading input from the standard input file changes the state of the file, so it should

logically change the value of cin as well.

Notice that read_hw returns in. Moreover, it does so as a reference. In effect, we are saying that we

were given an object, which we are not going to copy, and we will return that same object, again

without copying it. Returning the stream allows our caller to write

if (read_hw(cin, homework)){/*...*/}

as an abbreviation for

read_hw(cin, homework);

if (cin) {/*...*/}

We can now think about how to read the homework grades. Obviously, we want to read as many

grades as exist, so it would seem as if we could just write

// first try not quite right
double x;

while (in >> x)

 hw.push_back(x);

This strategy doesn't quite work, for two reasons. The first reason is that we haven't defined

hw—our caller defined it for us. Because we didn't define it, we don't know what data might be there

already. For all we know, our caller might be using our function to process homework for lots of

students, in which case hw might contain the previous student's grades. We can solve this problem

by calling hw.clear() before we begin our work.

The second reason that our strategy fails is that we don't quite know when to stop. We can keep

reading grades until we can no longer do so, but at that point we have a problem. There are two

reasons why we might no longer be able to read a grade: We might have reached end-of-file, or we

might have encountered something that is not a grade.

In the first case, our caller will think that we have reached end-of-file. This thought will be true but

misleading, because the end-of-file indication will have occurred only after we have successfully

read all the data. Normally, an end-of-file indication means that an input attempt failed.

In the second case, when we have encountered something that isn't a grade, the library will mark

the input stream as being in failure state, which means that future input requests will fail, just as if

we had reached end-of file. Therefore, our caller will think that something is wrong with the input

data, when the only problem was that the last homework grade was followed by something that was

not a homework grade.

In either case, then, we would like to pretend that we never saw whatever followed the last

homework grade. Such pretense turns out to be easy: If we reached end-of-file, there was no

additional input to read; if we encountered something that wasn't a grade, the library will have left it

unread for the next input attempt. Therefore, all we must do is tell the library to disregard whatever

condition caused the input attempt to fail, be it end-of-file or invalid input. We do so by calling

in.clear() to reset the error state inside in, which tells the library that input can continue despite the

failure.

There is one more detail to consider: Perhaps we have already run out of input, or encountered an

error condition, before even trying to read the first homework grade. In that case, we must leave the

input stream strictly alone, lest we inadvertently seduce our caller into trying to read nonexistent

input at some point in the future.

Here is the complete read_hw function:

// read homework grades from an input stream into a vector<double>

istream& read_hw(istream& in, vector<double>& hw)

{

 if (in) {

 // get rid of previous contents
 hw.clear() ;

 // read homework grades
 double x;

 while (in >> x)

 hw.push_back(x);

 // clear the stream so that input will work for the next student
 in.clear();

 }

 return in;

}

Note that the clear member behaves completely differently for istream objects than it does for

vector objects. For istream objects, it resets any error indications so that input can continue; for

vector objects, it discards any contents that the vector might have had, leaving us with an empty

vector again.

4.1.4 Three kinds of function parameters

We would like to pause at this point for an important observation: We have defined three

functions—median, grade, and read_hw—that operate on homework vectors. Each of these

functions treats the corresponding parameter in a fundamentally different way from the others, and

each treatment has a purpose.

The median function (§4.1.1/53) has a parameter of type vector<double>. Therefore, calling that

function causes the argument to be copied, even though that argument might be a huge vector.

Despite the inefficiency, vector<double> is the right parameter type for median, because this type

ensures that taking the median of a vector doesn't change the vector. The median function sorts its

parameter. If it did not copy its argument, then calling median(homework) would change the value

of homework.

The grade function that takes a homework vector (§4.1.2/54) has a parameter of type const

vector<double>&. In this type, the & asks the implementation not to copy the argument, and the

const promises that the program will not change the parameter. Such parameters are an important

technique for making programs more efficient. They are a good idea whenever the function will not

change the parameter's value, and the parameter is of a type, such as vector or string, with values

that might be time-consuming to copy. It is usually not worth the bother to use const references for

parameters of simple built-in types, such as int or double. Such small objects are usually fast

enough to copy that there's little, if any, overhead in passing them by value.

The read_hw function has a parameter of type vector<double>&, without the const. Again, the &

asks the implementation to bind the parameter directly to the argument, thus avoiding having to

copy the argument. But here, the reason to avoid the copy is that the function intends to change the

argument's value.

Arguments that correspond to nonconst reference parameters must be lvalues—that is, they must

be nontemporary objects. Arguments that are passed by value or bound to a const reference can be

any value. For example, suppose we have a function that returns an empty vector:

vector<double> emptyvec()

{

 vector<double> v; // no elements
 return v;

}

We could call this function, and use the result as an argument to our second grade function from

§4.1.2/54:

grade(midterm, final, emptyvec());

When run, the grade function would throw an exception immediately, because its argument is

empty. However, calling grade this way would be syntactically legal.

When we call read_hw, both of its arguments must be lvalues, because both parameters are

nonconst references. If we give read_hw a vector that is not an lvalue

read_hw(cin, emptyvec()); // error: emptyvec() is not an lvalue

the compiler will complain, because the unnamed vector that we create in the call to emptyvec will

disappear as soon as read_hw returns. If we were allowed to make this call, the effect would be to

store input in an object that we couldn't access!

4.1.5 Using functions to calculate a student's grade

The whole point of writing these functions is to use them in solving problems. For example, we can

use them to reimplement our grading program from §3.2.2/46:

// include directives and using-declarations for library facilities

// code for median function from §4.1.1/53

// code for grade(double, double, double) function from §4.1/52

// code for grade(double, double, const vector<double>&) function from §4.1.2/54

// code for read_hw(istream&, vector<double>&) function from §4.1.3/57
int main()

{

 // ask for and read the student's name
 cout << "Please enter your first name: ";

 string name;

 cin >> name;

 cout << "Hello, " << name << "!" << endl;

 // ask for and read the midterm and final grades
 cout << "Please enter your midterm and final exam grades: ";

 double midterm, final;

 cin >> midterm >> final;

 // ask for the homework grades
 cout << "Enter all your homework grades, "

 "followed by end-of-file: ";

 vector<double> homework;

 // read the homework grades
 read_hw(cin, homework);

 // compute and generate the final grade, if possible
 try {

 double final_grade = grade(midterm, final, homework);

 streamsize prec = cout.precision();

 cout << "Your final grade is " << setprecision(3)

 << final_grade << setprecision(prec) << endl;

 } catch (domain_error) {

 cout << endl << "You must enter your grades. "

 "Please try again." << endl;

 return 1;

 }

return 0;

}

The changes from the earlier version are in how we read the homework grades, and in how we

calculate and write the result.

After asking for our user's homework grades, we call our read_hw function to read the data. The

while statement inside read_hw repeatedly reads homework grades until we hit end-of-file or

encounter a data value that is not valid as a double.

The most important new idea in this example is the try statement. It tries to execute the statements

in the { } that follow the try keyword. If a domain_error exception occurs anywhere in these

statements, then it stops executing them and continues with the other set of { } -enclosed

statements. These statements are part of a catch clause, which begins with the word catch, and

indicates the type of exception it is catching.

If the statements between try and catch complete without throwing an exception, then the program

skips the catch clause entirely and continues with the next statement, which is return 0; in this

example.

Whenever we write a try statement, we must think carefully about side effects and when they occur.

We must assume that anything between try and catch might throw an exception. If it does so, then

any computation that would have been executed after the exception is skipped. What is important to

realize is that a computation that might have followed an exception in time does not necessarily

follow it in the program text.

For example, suppose that we had written the output block more succinctly as

// this example doesn't work
try {

streamsize prec = cout.precision();

cout << "Your final grade is " << setprecision(3)

 << grade(midterm, final, homework) << setprecision(prec);

} ...

The problem with this rewrite is that although the implementation is required to execute the <<

operators from left to right, it is not required to evaluate the operands in any specific order. In

particular, it might call grade after it writes Your final grade is. If grade throws an exception, then

the output might contain that spurious phrase. Moreover, the first call to setprecision might set the

output stream's precision to 3 without giving the second call the opportunity to reset the precision to

its previous value. Alternatively, the implementation might call grade before writing any output;

whether it does so depends entirely on the implementation.

This analysis explains why we separated the output block into two statements: The first statement

ensures that the call to grade happens before any output is generated.

A good rule of thumb is to avoid more than one side effect in a single statement. Throwing an

exception is a side effect, so a statement that might throw an exception should not cause any other

side effects, particularly including input and output.

Of course, we cannot run our main function as written. We need the include directives and

using-declarations for the library facilities that the program uses. We also use the names read_hw

and the grade function that takes a const vector<double>& third argument. The definitions of these

functions, in turn, use the median function and the grade function that takes three doubles.

In order to execute this program, we have to ensure that those functions are defined (in the proper

order) before our main function. Doing so yields an inconveniently large program. Rather than write

it out directly here, we'll see in §4.3/65 how we can partition such programs more succinctly into

files. Before we do so, let's look at better ways to structure our data.

4.2 Organizing data

Computing one student's grades may be useful to that student, but the computation is simple

enough that a pocket calculator could handle it almost as well as our program. On the other

hand, if we are teaching a course, we will want to compute grades for a class full of students.

Let's revise our program to make it useful for an instructor.

Instead of interactively reporting one student's grade, we'll assume that we are given a file

that contains many students' names and grades. Each name is followed by a midterm grade

and a final exam grade, and then by one or more homework assignment grades. Such a file

might look like

Smith 93 91 47 90 92 73 100 87

Carpenter 75 90 87 92 93 60 0 98

...

Our program should calculate each student's overall grade using medians: The median

homework grade counts 40%; the final, 40%; and the midterm, 20%. For this input, the output

would be

Carpenter 86.8

Smith 90.4

In the output, we want the report to be organized alphabetically by student, and we want the

final grades to line up vertically so that they are easier to read. These requirements imply that

we'll need a place to store the records for all the students, so that we can alphabetize them.

We'll also need to find the length of the longest name, so that we know how many spaces to

put between each name and its corresponding grade.

Assuming that we have a place to store the data about a single student, we can use a vector

to hold all the student data. Once the vector contains data for all the students, we can sort it,

and then calculate and write each student's grades. We'll start by creating a data structure to

hold the student data, and by writing some auxiliary functions to read and process those data.

After we have developed these abstractions, we'll use them to solve the overall problem.

4.2.1 Keeping all of a student's data together

We know that we need to read each student's data and then arrange the students in

alphabetical order. When we do so, we want to keep the students' names and grades

together. Therefore, we need a way to store in one place all the information that pertains to

one student. That place should be a data structure that holds the student's name, midterm

and final exam grades, and all the homework grades.

In C++, we define such a data structure as follows:

struct Student_info {

 string name;

 double midterm, final;

 vector<double> homework;

}; // note the semicolon it's required

This struct definition says that Student_info is a type, which has four data members.

Because Student_info is a type, we can define objects of that type, each of which will contain

an instance of these four data members.

The first member, named name, is of type string; the second and third are doubles named

midterm and final; and the last is a vector of doubles named homework.

Each object of Student_info type holds information about one student. Because Student_info

is a type, we can use a vector<Student_info> object to hold information about an arbitrary

number of students, just as we used a vector<double> object to hold an arbitrary number of

homework grades.

4.2.2 Managing the student records

If we break our problem into manageable components, we'll see that there are three

separable steps, which we can represent by separate functions: We need to read data into a

Student_info object, we need to generate the overall grade for a Student_info object, and we

need to be able to sort a vector of Student_info objects.

The function that reads one of our records is a lot like the read_hw function that we wrote in

§4.1.3/57. In fact, we can use that function to read the homework grades. In addition, we'll

need to read the student's name and exam grades:

istream& read(istream& is, Student_info& s)

{

 // read and store the student's name and midterm and final exam grades

 is >> s.name >> s.midterm >> s.final;

 read_hw(is, s.homework); // read and store all the student's homework grades

 return is;

}

There is no ambiguity in naming this function read, because the type of its second parameter

will tell us what we're reading. Overloading will distinguish it from any other function called

read that might read into another kind of structure. Like read_hw, this function takes two

references: one to the istream from which to read, and another to the object in which to store

what it reads. When we use the parameter s inside the function, we will affect the state of the

argument that we were passed.

This function works by reading values into the name, midterm, and final members of the

object s, and then calling read_hw to read the homework grades. We might reach end-of-file,

or encounter input failure, at any point during this process. If so, the subsequent input

attempts will do nothing, and when we return, is will be in the appropriate error state. Note

that this behavior relies on the fact that the read_hw function (§4.1.3/57) carefully leaves the

input stream in an error state if it was already in such a state when we called read_hw.

The other function that we need computes a final grade for a Student_info object. We already

solved most of this problem when we defined the grade function in §4.1.2/54. We will

continue that work just a little further by overloading the grade function with a version that

determines the overall grade for a Student_info object:

double grade(const Student_info& s)

{

 return grade(s.midterm, s.final, s.homework);

}

This function operates on an object of type Student_info, and returns a double that

represents the overall grade. Note that the parameter has type const Student_info&, rather

than just plain Student_info, so that when we call it, we do not incur the overhead of copying

an entire Student_info object.

Note also that this function does not protect against an exception being thrown by the grade

function that it calls. The reason is that there isn't anything that our grade function can do to

handle the exception beyond what the grade function that it calls has already done. Because

our grade function doesn't catch the exception, any exception that occurs will be passed back

to our caller, which presumably will be in a better position than we are to decide what to do

about students who did no homework.

Our last task, before writing the whole program, is to decide how we will sort our vector of

Student_info objects. In the median function (§4.1.1/53), we sorted a vector<double>

parameter, named vec, by using the library sort function:

sort(vec.begin(), vec.end());

However, assuming our data is in a vector called students, we can't just say

sort(students.begin(), students.end()); // not quite right

Why not? We'll have much more to say about sort and other library algorithms in Chapter 6,

but it is worth thinking a bit abstractly about how the sort function might operate. In particular,

how does sort know how to arrange the values in the vector?

The sort function must compare elements of the vector in order to put them in sequence. It

does so by using the < operator for the element type of whatever vector it is asked to sort. We

can call sort on a vector<double>, because the < operator will compare two doubles and

give us an appropriate result. What will happen when sort tries to compare the values of type

Student_info? The < operator does not have an obvious meaning when applied to

Student_info objects. Indeed, when sort tries to compare two such objects, the compiler will

complain.

Fortunately, the sort function takes an optional third argument that is a predicate. A predicate

is a function that yields a truth value, typically of type bool. If this third argument is present,

the sort function will use it to compare elements instead of using the < operator. Therefore, we

need to define a function that takes two Student_infos, and that says whether the first is less

than the second. Because we want to order the students alphabetically by name, we'll write

our comparison function to compare only the names:

bool compare(const Student_info& x, const Student_info& y)

{

 return x.name < y.name;

}

This function simply delegates the work of comparing Student_infos to the string class, which

provides a < operator for comparing strings. That operator compares strings by applying

normal dictionary ordering. That is, it considers the left-hand operand to be less than the

right-hand operand if it is alphabetically ahead of the right-hand operand. This behavior is

exactly what we need.

Having defined compare, we can sort the vector by passing the compare function as a third

argument to the sort library function:

sort(students.begin(), students.end(), compare);

When sort compares elements, it will call our compare function to do so.

4.2.3 Generating the report

Now that we have functions to process student records, we can generate our report:

int main()

{

 vector<Student_info> students;

 Student_info record;

 string::size_type maxlen = 0;

 // read and store all the records, and find the length of the longest name

 while (read(cin, record)) {

 maxlen = max(maxlen, record.name.size());

 students.push_back(record);

 }

 // alphabetize the records

 sort(students.begin(), students.end(), compare);

 for (vector<Student_info>::size_type i = 0;

 i != students.size(); ++i) {

 // write the name, padded on the right to maxlen + 1 characters

 cout << students[i].name

 << string(maxlen + 1 - students[i].name.size(), ' ');

 // compute and write the grade

 try {

 double final_grade = grade(students[i]);

 streamsize prec = cout.precision();

 cout << setprecision(3) << final_grade

 << setprecision(prec);

 } catch (domain_error e) {

 cout << e.what();

 }

 cout << endl;

 }

 return 0;

}

We have already seen most of this code, but a couple of points are new.

The first novelty is the call to the library function max, which is defined in the header

<algorithm>. On the surface, max's behavior is obvious. However, one aspect of its behavior

is not obvious: Its arguments must both have the same type, for complicated reasons that we

shall explore in §8.1.3/142. This requirement makes it essential for us to define maxlen to be

a variable of type string::size_type; it won't do merely to define it as an int.

The second novelty is the expression

string(maxlen + 1 - students[i].name.size(), ' ')

This expression constructs a nameless object (§1.1/10) of type string. The object contains

maxlen + 1 - students[i].name.size() characters, all of which are blank. This expression is

similar to the definition of spaces in §1.2/13, but it omits the name of the variable. This

omission effectively turns the definition into an expression. Writing students[i].name followed

by this expression yields output that contains the characters in students[i].name, padded on

the right to exactly maxlen + 1 characters.

The for statement uses the index i to walk through students one element at a time. We get

the name to write by indexing into students to get the current Student_info element. We then

write the name member from that object, using an appropriately constructed string of blanks

to pad the output.

Next we write the final grade for each student. If the student didn't do any homework, the

grade computation will throw an exception. In that case, we catch the exception, and instead

of writing a numeric grade, we write the message that was thrown as part of the exception

object. Every one of the standard-library exceptions, such as domain_error, remembers the

(optional) argument used to describe the problem that caused the exception to be thrown.

Each of these types makes a copy of the contents of that argument available through a

member function named what. The catch in this program gives a name to the exception

object that it gets from grade (§4.1.2/54), so that it can write as output the message that it

obtains from what(). In this case, that message will tell the user that the student has done no

homework. If there is no exception, we use the setprecision manipulator to specify that we'll

write three significant digits, and then write the result from grade.

4.3 Putting it all together

So far we have defined a number of abstractions (functions and a data structure) that are

useful in solving our various grading problems. The only way we have seen of using these

abstractions is to put all their definitions in a single file and compile that file. Obviously, this

approach becomes complicated very quickly. To reduce that complexity, C++, like many

languages, supports the notion of separate compilation, which allows us to put our program

into separate files and to compile each of these files independently.

We'll start by understanding how to package the median function so that others can use it.

We begin by putting the definition of the median function into a file by itself so that we can

compile it separately. That file must include declarations for all the names that the median

function uses. From the library, median uses the vector type, the sort function, and the

domain_error exception, so we will have to include the appropriate headers for these

facilities:

// source file for the median function

#include <algorithm>> // to get the declaration of sort

#include <stdexcept> // to get the declaration of domain_error

#include <vector> // to get the declaration of vector

using std::domain_error; using std::sort; using std::vector;

// compute the median of a vector<double>

// note that calling this function copies the entire argument vector

double median(vector<double> vec)

{

 // function body as defined in §4.1.1/53

}

As with any file, we must give our source file a name. The C++ standard does not tell us how

to name source files, but in general, a source file's name should suggest its contents.

Moreover, most implementations constrain source-file names, usually requiring the last few

characters of the name to have a specific form. Implementations use these file suffixes to

determine whether a file is a C++ source file. Most implementations require the names of C++

source files to end in .cpp, .C, or .c, so we might put the median function in a file named

median.cpp, median.C, or median.c, depending on the implementation.

The next step is to make the median function available to other users. Analogous with the

standard library, which puts the names it defines into headers, we can write our own header

file that will allow users to access names that we define. For example, we could note in a file

named median.h that our median function exists. If we did so, users could use it by writing:

// a much better way to use median

#include "median.h"

#include <vector>

int main(){/*...*/}

When we use a #include directive with double quotes rather than angle brackets, surrounding

the header name, we are saying that we want the compiler to copy the entire contents of the

header file that corresponds to that name into our program in place of the #include directive.

Each implementation decides where to look for header files, and what the relationship is

between the string between the quotes and the name of the file. We shall talk about "the

header file median.h" as shorthand for "the file that the implementation decides is the one that

corresponds to the name median.h."

It is worth noting that although we refer to our own headers as header files, we refer to the

implementation-supplied headers as standard headers rather than standard header files. The

reason is that header files are genuine files in every C++ implementation, but system headers

need not be implemented as files. Even though the #include directive is used to access both

header files and system headers, there is no requirement that they be implemented in the

same way.

Now that we know we must supply a header file, the obvious question is what should be in it.

The simple answer is that we must write a declaration for the median function, which we do

by replacing the function body with a semicolon. We can also eliminate the names of the

parameters, because they are irrelevant without the function body:

double median(vector<double>);

Our median.h header cannot contain just this declaration; we must also include any names

that the declaration itself uses. This declaration uses vector, so we must make sure that that

name is available before the compiler sees our declaration:

// median.h

#include <vector>

double median(std::vector<double>);

We include the vector header so that we can use the name std::vector in declaring the

argument to median. The reason that we mention std::vector explicitly, rather than writing a

using-declaration, is more subtle.

In general, header files should declare only the names that are necessary. By restricting the

names contained in a header file, we can preserve maximum flexibility for our users. For

example, we use the qualified name for std::vector because we have no way of knowing how

the user of our median function wants to refer to std::vector. Users of our code might not

want a using-declaration for vector. If we write one in our header, then all programs that

include our header get a using std::vector declaration, regardless of whether they wanted it.

Header files should use fully qualified names rather than using-declarations.

There is one last detail to cover: Header files should ensure that it is safe to include the file

more than once as part of compiling the program. As it happens, our header file is already

safe as it stands, because it contains only declarations. However, we consider it good practice

to cater to multiple inclusion in every header file, not just the ones that need it. We do so by

adding some preprocessor magic to the file:

#ifndef GUARD_median_h

#define GUARD_median_h

// median.h—final version

#include <vector>

double median(std::vector<double>);

#endif

The #ifndef directive checks whether GUARD_median_h is defined. This is the name of a

preprocessor variable, which is one of a variety of ways of controlling how a program is

compiled. A full discussion of the preprocessor is beyond the scope of this book.

In this context, the #ifndef directive asks the preprocessor to process everything between it

and the next matching #endif if the given name is not defined. We must choose a name that

is unique in the entire program, so we make one from the name of our file and a string, such

as GUARD_, that we hope will not be duplicated elsewhere.

The first time median.h is included in a program, GUARD_median_h will be undefined, so

the preprocessor will look at the rest of the file. The first thing it does is to define

GUARD_median_h, so that subsequent attempts to include median.h will have no effect.

The only other subtlety is that it is a good idea for the #ifndef to be the very first line of the file,

without even a comment before it:

#ifndef variable

...

#endif

The reason is that some C++ implementations detect files that have this form and, if the

variable is defined, do not even bother to read the file the second time around.

4.4 Partitioning the grading program

Now that we know how to arrange to compile the median function separately, the next step is

to package our Student_info structure and associated functions:

#ifndef GUARD_Student_info

#define GUARD_Student_info

// Student_info.h header file

#include <iostream>

#include <string>

#include <vector>

struct Student_info {

 std::string name;

 double midterm, final;

 std::vector<double> homework;

};

bool compare(const Student_info&, const Student_info&);

std::istream& read(std::istream&, Student_info&);

std::istream& read_hw(std::istream&, std::vector<double>&);

#endif

Notice that we explicitly use std:: to qualify names from the standard library, rather than

including using-declarations, and that Student_info.h declares the compare, read, and

read_hw functions, which are closely associated with the Student_info structure. We will use

these functions only if we are also using this structure, so it makes sense to package these

functions with the structure definition.

The functions should be defined in a source file that will look something like:

// source file for Student_info-related functions

#include "Student_info.h"

using std::istream; using std::vector;

bool compare(const Student_info& x, const Student_info& y)

{

 return x.name < y.name;

}

istream& read(istream& is, Student_info& s)

{

 // read and store the student's name and midterm and final exam grades

 is >> s.name >> s.midterm >> s.final;

 read_hw(is, s.homework); // read and store all the student's homework grades

 return is;

}

// read homework grades from an input stream into a `vector'

istream& read_hw(istream& in, vector<double>& hw)

{

 if (in) {

 // get rid of previous contents

 hw.clear();

 // read homework grades

 double x;

 while (in >> x)

 hw.push_back(x);

 // clear the stream so that input will work for the next student

 in.clear();

 }

 return in;

}

Note that because we include the Student_info.h file, this file contains both declarations and

definitions of our functions. This redundancy is harmless, and is actually a good idea. It gives

the compiler the opportunity to check for consistency between the declarations and the

definitions. These checks are not exhaustive in most implementations, because complete

checking requires seeing the entire program, but they are useful enough to make it worthwhile

for source files to include the corresponding header files.

The checking and its incompleteness stem from a common source: The language requires

function declarations and definitions to match exactly in their result type, and in the number

and types of parameters. This rule explains the implementation's ability to check—but why the

incompleteness? The reason is that if a declaration and definition differ enough, the

implementation can only assume that they describe two different versions of an overloaded

function, and that the missing definition will appear elsewhere. For example, suppose we

defined median as in §4.1.1/53, and we declared it incorrectly as

int median (std::vector<double>); // return type should be double

If the compiler sees this declaration when it compiles the definition, it will complain, because it

knows that the return type of median(vector<double>) cannot simultaneously be double and

int. Suppose, however, that instead we had declared

double median (double); // argument type should be vector<double>

Now the compiler can't complain, because median(double) could be defined elsewhere. If we

call the function, then the implementation must eventually look for its definition. If it doesn't

find the definition, it will complain at that point.

Note, too, that in the source file, there is no problem with using-declarations. Unlike a header

file, a source file has no effect on the programs that use these functions. Hence reliance on

using-declarations in a source file is purely a local decision.

What's left is to write a header file to declare the various overloaded grade functions:

#ifndef GUARD_grade_h

#define GUARD_grade_h

// grade.h

#include <vector>

#include "Student_info.h"

double grade(double, double, double);

double grade(double, double, const std::vector<double>&);

double grade(const Student_info&);

#endif

Notice how bringing the declarations of these overloaded functions together makes it easier to

see all the alternatives. We will define all three functions in a single file, because they are

closely related. Again, the name of the file will depend on the implementation, but will

probably be grade.cpp, grade.C, or grade.c:

#include <stdexcept>

#include <vector>

#include "grade.h"

#include "median.h"

#include "Student_info.h"

using std::domain_error; using std::vector;

// definitions for the grade functions from §4.1/52, §4.1.2/54 and §4.2.2/63

4.5 The revised grading program

Finally we can write our complete program:

#include <algorithm>

#include <iomanip>

#include <ios>

#include <iostream>

#include <stdexcept>

#include <string>

#include <vector>

#include "grade.h"

#include "Student_info.h"

using std::cin; using std::setprecision;

using std::cout; using std::sort;

using std::domain_error; using std::streamsize;

using std::endl; using std::string;

using std::max; using std::vector;

int main()

{

 vector<Student_info> students;

 Student_info record;

 string::size_type maxlen = 0; // the length of the longest name

 // read and store all the students data.

 // Invariant: students contains all the student records read so far

 // maxlen contains the length of the longest name in students

 while (read(cin, record)) {

 // find length of longest name

 maxlen = max(maxlen, record.name.size());

 students.push_back(record);

 }

 // alphabetize the student records

 sort(students.begin(), students.end(), compare);

 // write the names and grades

 for (vector<Student_info>::size_type i = 0;

 i != students.size(); ++i) {

 // write the name, padded on the right to maxlen + 1 characters

 cout << students[i].name

 << string(maxlen + 1 - students[i].name.size(), ' ');

 // compute and write the grade

 try {

 double final_grade = grade(students[i]);

 streamsize prec = cout.precision();

 cout << setprecision(3) << final_grade

 << setprecision(prec);

 } catch (domain_error e) {

 cout << e.what();

 }

 cout << endl;

 }

 return 0;

}

This program should be fairly straightforward to understand. As usual, we start with the

necessary includes and using-declarations. Of course, we need mention only those headers

and declarations that we use in this source file. In this program, we have our own headers to

include as well as library headers. Those headers make available the definition of the

Student_info type, and declarations for the functions that we use to manipulate Student_info

objects and generate grades. The main function itself is the same as the one that we

presented in §4.2.3/64.

4.6 Details

Program structure:

#include <system-header>

Angle brackets, < >, enclose system headers. System headers may or may not be

implemented as files.

#include "user-defined-header-file-name"

User-defined header files are included by enclosing the name in quotes. Typically,

user-defined headers have a suffix of .h.

Header files should be guarded against multiple inclusion by wrapping the file in an #ifndef

GUARD_header_name directive. Headers should avoid declaring names that they do not use.

In particular, they should not include using-declarations, but instead should prefix

standard-library names with std:: explicitly.

Types:

T&

Denotes a reference to the type T. Most commonly used to pass a parameter that a function

may change. Arguments to such parameters must be lvalues.

const T&

Denotes a reference to the type T that may not be used to change the value to which the

reference is bound. Usually used to avoid cost of copying a parameter to a function.

Structures: A structure is a type that contains zero or more members. Each object of the

structure type contains its own instance of each of its members. Every structure must have a

corresponding definition:

struct type-name {

 type-specifier member-name;

 ...

}; // note the semicolon

Like all definitions, a structure definition may appear only once per source file, so it should

normally appear in a properly guarded header file.

Functions: A function must be declared in every source file that uses it, and defined only

once. The declarations and definitions have similar forms:

ret-typefunction-name (parm-decls) // function declaration

[inline] ret-typefunction-name (parm-decls) { // function definition

 // function body goes here

}

Here, ret-type is the type that the function returns, parm-decls is a comma-separated list of

the types for the parameters of the function. Functions must be declared before they are

called. Each argument's type must be compatible with the corresponding parameter. A

different syntax is necessary to declare or define functions with sufficiently complicated return

types; see §A.1.2/297 for the full story.

Function names may be overloaded: The same function-name may define multiple functions

so long as the functions differ in the number or types of the parameters. The implementation

can distinguish between a reference and a const reference to the same type.

We can optionally qualify a function definition with inline, which asks the compiler to expand

calls to the function inline when appropriate—that is, to avoid function-call overhead by

replacing each call to the function by a copy of the function body, modified as necessary. To

do so, the compiler needs to be able to see the function definition, so inlines are usually

defined in header files, rather than in source files.

Exception handling:

try { // code

Initiates a block that might throw an exception.

} catch(t) { /* code* / }

Concludes the try block and handles exceptions that match the type t. The code following

the catch performs whatever action is appropriate to handle the exception reported in t.

throw e;

Terminates the current function; throws the value e back to the caller.

Exception classes: The library defines several exception classes whose names suggest the

kinds of problems they might be used to report:

logic_error domain_error invalid_argument

length_error out_of_range runtime_error

range_error overflow_error underflow_error

e.what()

Returns a value that reports on what happened to cause the error.

Library facilities:

s1 < s2

Compares strings s1 and s2 by applying dictionary ordering.

s.width(n)

Sets the width of stream s to n for the next output operation (or leaves it unchanged if n is

omitted). The output is padded on the left to the given width. Returns the previous width.

The standard output operators use the existing width value and then call width(0) to reset

the width.

setw(n)

Returns a value of type streamsize (§3.1/36) that, when written on an output stream s, has

the effect of calling s.width(n).

Exercises

4-0. Compile, execute, and test the programs in this chapter.

4-1. We noted in §4.2.3/65 that it is essential that the argument types in a call to max match

exactly. Will the following code work? If there is a problem, how would you fix it?

int maxlen;

Student_info s;

max(s.name.size(), maxlen);

4-2. Write a program to calculate the squares of int values up to 100. The program should

write two columns: The first lists the value; the second contains the square of that value. Use

setw (described above) to manage the output so that the values line up in columns.

4-3. What happens if we rewrite the previous program to allow values up to but not including

1000 but neglect to change the arguments to setw? Rewrite the program to be more robust in

the face of changes that allow i to grow without adjusting the setw arguments.

4-4. Now change your squares program to use double values instead of ints. Use

manipulators to manage the output so that the values line up in columns.

4-5. Write a function that reads words from an input stream and stores them in a vector. Use

that function both to write programs that count the number of words in the input, and to count

how many times each word occurred.

4-6. Rewrite the Student_info structure to calculate the grades immediately and store only the

final grade.

4-7. Write a program to calculate the average of the numbers stored in a vector<double>.

4-8. If the following code is legal, what can we infer about the return type of f?

double d = f()[n];

5

Using sequential containers and analyzing strings

We've made a fair start on the core C++ language, and we've learned something about the string

and vector classes as well. We can solve a lot of problems with just these tools.

In this chapter, we'll expand our focus beyond these facilities, and start to understand in more depth

how to use the library. As we'll see, the facilities that the library provides can help us solve messier

problems than the ones that we've confronted so far.

Not only does the standard library provide useful data structures and functions, but it also reflects a

consistent architecture: Once we have learned how one kind of container behaves, we are well on

our way to understanding how to use all the library containers.

For example, as we'll see in the second half of this chapter, we can often use a string as if it were a

vector. Many useful operations on one library type are logically the same as the operations on

another. The library is constructed so that such equivalent operations work the same way on

different types.

5.1 Separating students into categories

Let's revisit our student-grading problem from §4.2/61, supposing this time that not only do we wish

to calculate all the students' grades, but we would also like to know which students failed the

course. The idea is that if we have a vector of Student_info records, we would like to extract the

ones for students who failed the course, and store those records in another vector. We also want to

remove the data for failing students from the original vector, so that it will contain only records for

students who passed. We'll start by writing a simple function to test whether a student failed:

// predicate to determine whether a student failed
bool fgrade(const Student_info& s)

{

 return grade(s) < 60;

}

We use the grade function from §4.2.2/63 to calculate the grade, and we arbitrarily define a failing

grade as one that is less than 60.

The most straightforward approach to solving our overall problem is to examine each student record

and push it onto one of two vectors, one for students with passing grades and the other for students

with failing grades:

// separate passing and failing student records: first try
vector<Student_info> extract_fails(vector<Student_info>& students)

{

 vector<Student_info> pass, fail;

 for (vector<Student_info>::size_type i = 0;

 i != students.size(); ++i)

 if (fgrade(students[i]))

 fail.push_back(students[i]);

 else

 pass.push_back(students[i]);

 students = pass;

 return fail;

}

Of course, before we can compile this code, we must add #include directives and

using-declarations for the names that we are using. In general, we will no longer show these

statements in code that we present. When we use a new header, though, we will continue to

mention it.

Like the read_hw and read functions from Chapter 4, this function effectively has two outputs: One

is the vector<Student_info> that we return, which contains the records for students who failed; the

other is created as a side effect of calling extract_fails. The function's parameter is a reference, so

changes to the parameter are reflected in the argument. When the function finishes, the vector that

was passed as an argument will contain records only for students who passed the course.

The function works by creating two vectors, which hold the data for passing and failing students

respectively. The function looks at each record in students, and appends a copy of that record to

pass or fail depending on the student's grade.

After the for statement is finished, we copy the passing records back into students and return the

failing records.

5.1.1 Erasing elements in place

Our extract_fails function does what we want, and is reasonably efficient, but it has a subtle flaw: It

requires enough memory to hold two copies of each student record. The reason is that as it builds

up pass and fail, the original records are still around. When the function is done with its for

statement, and is ready to copy the results and return, there are two copies of each student record.

We would like to avoid keeping multiple copies of data around any longer than necessary. One way

to do so is to eliminate pass entirely. Instead of creating two vectors, we will create a single local

variable, named fail, to hold the value that we intend to return. For each record in students, we will

compute the grade. If it is a passing grade, we'll leave the record alone; if it's a failing grade, we'll

append a copy of it to fail and remove it from students.

To use this strategy, we need a way to remove an element from a vector. The good news is that

such a facility exists; the bad news is that removing elements from vectors is slow enough to argue

against using this approach for large amounts of input data. If the data we process get really big,

performance degrades to an astonishing extent.

For example, if all of our students were to fail, the execution time of the function that we are about to

see would grow proportionally to the square of the number of students. That means that for a class

of 100 students, the program would take 10,000 times as long to run as it would for one student.

The problem is that our input records are stored in a vector, which is optimized for fast random

access. One price of that optimization is that it can be expensive to insert or delete elements other

than at the end of the vector.

We shall see two ways to solve the performance problem: We can use a data structure that is better

suited to our algorithm, or we can use a smarter algorithm that avoids the overhead of our initial

design. From here through §5.5.2/87, we'll develop a solution that uses a more appropriate data

structure. We'll show an algorithmic solution in §6.3/116.

Before we can understand why these solutions are improvements, we must have something to

improve. Therefore, we'll begin by looking at the slow but direct solution:

// second try: correct but potentially slow
vector<Student_info> extract_fails(vector<Student_info>& students)

{

 vector<Student_info> fail;

 vector<Student_info>::size_type i = 0;

 // invariant:elements [0, i) of students represent passing grades
 while (i != students.size()) {

 if (fgrade(students[i])) {

 fail.push_back(students[i]};

 students.erase(students.begin() + i);

 } else

 ++i;

 }

 return fail;

}

We begin this version by creating fail, which is the vector into which we'll copy the records for

students with failing grades. We next define i, which we'll use as an index into students. We'll

process each record, iterating through students until we've seen all the entries in students.

For each record in students, we determine whether it represents a failing grade. If so, then we need

to copy that record into fail and remove it from students. The push_back call to append a copy of

students[i] to fail is nothing new. What is new is the way we remove the element from students:

students.erase(students.begin() + i);

The vector type includes a member named erase, which removes an element from the vector. The

argument to erase indicates which element to remove. As it happens, there is no version of the

erase function that operates on indices, because, as we shall see in §5.5/85, not all containers

support indices, and it is more useful for the library to offer a form of erase that will work the same

way with all containers. Instead, the erase function takes a type that we shall discuss in §5.2.1/80.

What's important to understand now is that we can indicate which element to erase by adding our

index to the value returned by students.begin(). Recall that students.begin() returns a value that

denotes the vector's initial element—the one with index 0 . If we add an integer, such as i, to that

value, the result denotes the element with index i. We can now see that this call to erase removes

the ith element from students.

Once we have removed an element from the vector, the vector now has one fewer element than it

did before:

In addition to changing the size of the vector, erase removes the element with index i, thereby

causing i to denote the next element in the sequence. Each element after position i is copied to the

preceding position. Thus, although i does not change, erase has the effect of adjusting the index to

denote the next element in the vector, which means that we must not increment it for the next

iteration.

If the record we're looking at does not contain a failing grade, then we want to leave it in students.

In that case, we must increment i, so that i will refer to the next record on the next trip through the

while.

We determine whether we have seen all the records in students by comparing i with

students.size(). When we erase an element from the vector, the vector has one fewer element

than it did before. Therefore, it is essential that we call students.size on each trip through the

condition. If, instead, we precomputed and stored the result of size

// this code will fail because of misguided optimization
vector<Student_info>::size_type size = students.size();

while (i != size) {

 if (fgrade(students[i])) {

 fail.push_back(students[i]);

 students.erase(students.begin() + i);

 } else

 ++i;

}

our program would fail, because calling erase would have changed the number of elements in

students. If we precomputed the size and actually erased any records for failing students, then we

would make too many trips through students, and the references to students[i] would be to

nonexistent elements! Fortunately, calls to size() are usually fast, so the expected overhead from

calling size each time is negligible.

5.1.2 Sequential versus random access

Both versions of our extract_fails function share a property with many programs that work with

containers, which property is not immediately obvious from the code: Each of these functions

accesses container elements only sequentially. That is, each version of the function looks at each

student record in turn, decides what to do with it, and then proceeds to the next record.

The reason that this property is not obvious from the code is that the function uses an integer, i, to

access each element of students. It is possible to compute the value of an integer in arbitrary ways,

which means that in order for us to determine whether we are accessing the container sequentially,

we must look at every operation that might affect the value of i, and determine that operation's

effect. Another way to view the problem is that when we write students[i] to access an element of

students, we are implicitly saying that we might access students's elements in any order, not just

sequentially.

The reason we care about the sequence in which we access container elements is that different

types of containers have different performance characteristics and support different operations. If

we know that our program uses only those operations that a particular type of container supports

efficiently, then we can make our program more efficient by using that kind of container.

In other words, because our function requires only sequential access, we do not need to use

indices, which provide the ability to access any element randomly. Instead, we'd like to rewrite the

function so as to restrict access to the container elements to operations that support only sequential

access. To that end, the C++ library supplies an assortment of types called iterators, which allow

access to data structures in ways that the library can control. This control lets the library ensure

efficient implementation.

5.2 Iterators

To make our discussion more concrete, let us look at the container operations that

extract_fails actually uses.

The first such operation is using the index i to fetch values from the Student_info structure.

For example, fgrade(students[i]) fetches the ith element of the vector named students, and

passes that element to the fgrade function. We know that we access the elements of

students sequentially, because we access those elements only by using i as an index, and

the only operations we ever perform on i are to read it in order to compare it with the size of

the vector, and to increment it:

while (i != students.size()) {

 // work gets done here; but doesn't change the value of i

 i++;

}

From this usage, it is clear that we use i only sequentially.

Unfortunately, even though we know this fact, the library has no way to know it. By using

iterators instead of indices, we can make that knowledge available to the library. An iterator is

a value that

Identifies a container and an element in the container

Lets us examine the value stored in that element

Provides operations for moving between elements in the container

Restricts the available operations in ways that correspond to what the container can

handle efficiently

Because iterators behave analogously to indices, we can often rewrite programs that use

indices to make them use iterators instead. As an example, suppose that students is a

vector<Student_info> that contains records for some students. Let's look at how we could

write those students' names onto cout. One way uses an index for the iteration:

for (vector<Student_info>::size_type i = 0;

 i != students.size(); ++i)

 cout << students[i].name << endl;

Another way uses iterators:

for (vector<Student_info>::const_iterator iter = students.begin();

 iter != students.end(); ++iter) {

 cout << (*iter).name << endl;

}

There's quite a lot going on in this rewrite, so let's pick it apart a bit at a time.

5.2.1 Iterator types

Every standard container, such as vector, defines two associated iterator types:

container-type::const_iterator

container-type::iterator

where container-type is the container type, such as vector<Student_info>, that includes the

type of the container elements. When we want to use an iterator to change the values stored

in the container, we use the iterator type. If we need only read access, then we use the

const_iterator type.

Abstraction is selective ignorance. The details of what particular type an iterator has may be

complicated, but we don't need to understand these details. All we need to know is how to

refer to the iterator type, and what operations the iterator allows. We need to know the type so

that we can create variables that are iterators. We don't need to know anything about that

type's implementation. For example, our definition of iter

vector<Student_info>::const_iterator iter = students.begin();

says that iter is of type vector<Student_info>::const_iterator. We don't know the actual type

of iter—that's an implementation detail of vector—nor do we need to know. All that we need

to know is that vector<student_info> has a member named const_iterator that defines a type

that we can use to obtain read-only access to elements of the vector.

The other thing we need to know is that there is an automatic conversion from type iterator to

type const_iterator. As we're about to learn, students.begin() returns an iterator, but we said

that iter is a const_iterator. In order to initialize iter with the value of students.begin(), the

implementation converts the iterator value into the corresponding const_iterator. This

conversion is one way, meaning that we can convert an iterator to a const_iterator but not

vice versa.

5.2.2 Iterator operations

Having defined iter, we set it to the value of students.begin(). We have used the begin and

end functions before, so we should know what these functions do: They return a value that

denotes the beginning or (one past) the end of a container. We'll explain our repeated

emphasis on "(one past)" in §8.2.7/149. What's useful to know now is that begin and end

functions return a value of the iterator type for the container. Thus, begin returns a

vector<Student_info>::iterator positioned at the initial element of the container, so iter

initially refers to the first element in students. The condition in the for statement,

iter != students.end()

checks whether we've reached the end of the container. Recall that end returns a value that

denotes (one past) the end of the container. As with begin, the type of this value is

vector<Student_info>::iterator. We can compare two iterators, const or not, for inequality (or

equality). If iter is equal to the value returned by students.end(), then we're through.

The last expression in the for header, ++iter, increments the iterator so that it refers to the

next element in students on the next trip through the for. The expression ++iter uses the

increment operator, overloaded for the iterator type. The increment operator has the effect of

advancing the iterator to the next element in the container. We don't know, and shouldn't care,

how the increment operator works. All that we need to know is that afterward, the iterator

denotes the next element in the container.

In the body of the for, iter is positioned on an element in students, which element we need to

write. We access that element by calling the dereference operator, *. When applied to an

iterator, the * operator returns an lvalue (§4.1.3/56) that is the element to which the iterator

refers. Therefore, the output operation

cout << (*iter).name

has the effect of writing the current element's name member on the standard output.

In order to execute correctly, this expression requires parentheses that override the normal

operator precedence. The expression *iter returns the value that the iterator iter denotes. The

precedence of . is higher than the precedence of *, which means that if we want the *

operation to apply only to the left operand of the ., we must enclose *iter in parentheses to get

(*iter). If we wrote *iter.name, the compiler would treat it as *(iter.name), which would be a

request to fetch the name member from object iter, and apply the dereference operator to that

object. The compiler would complain because iter does not have a member named name. By

writing (*iter).name, we say that we want to refer to the name member of the *iter object.

5.2.3 Some syntactic sugar

In the code we just saw, we dereferenced an iterator, and then fetched an element from the

value returned. This combination of operations is so common that there is an abbreviation for

it: Instead of

(*iter).name

we can write

iter->name

We can use this syntactic sugar to rewrite the last example in §5.2/80:

for (vector<Student_info>::const_iterator iter = students.begin();

 iter != students.end(); ++iter) {

 cout << iter->name << endl;

}

5.2.4 The meaning of students.erase (students.begin () + i)

Now that we understand more about iterators, we can see the real point of

students.erase(students.begin() + i);

in the program in §5.1.1/77. We've already seen that students.begin() is an iterator that refers

to the initial element of students, and that students.begin() + i refers to the ith element of

students. What is important to realize is that this latter expression gets its meaning from the

definition of + on the types of students.begin() and i. In other words, the iterator and index

types determine the meaning of + in this expression.

If students were a container that did not support random-access indexing, it is likely that

students.begin() would be of a type that did not have + defined—in which case the

expression students.begin() + i would not compile. In effect, such a container would be able

to shut off random access to its elements, while still allowing sequential access through

iterators.

5.3 Using iterators instead of indices

Using what we have learned about iterators, and one more new fact, we can reimplement the

extract_fails function in a way that does not use indexing at all:

// version 3: iterators but no indexing; still potentially slow

vector<Student_info> extract_fails(vector<Student_info>& students)

{

 vector<Student_info> fail;

 vector<Student_info>::iterator iter = students.begin();

 while (iter != students.end()) {

 if (fgrade(*iter)) {

 fail.push_back(*iter);

 iter = students.erase(iter);

 } else

 ++iter;

 }

return fail;

}

We start by defining fail as we did before. Next, we define the iterator, named iter, that we'll

use—in place of an index—to look at the elements in students. Note that we give it type

iterator instead of const_iterator:

vector<Student_info>::iterator iter = student.begin();

because we intend to use it to modify students, which we do in the call to erase. We initialize

iter to denote the first element in students.

We continue with a while statement that will look at every element of students. Remember

that iter is an iterator that denotes an element in the container, so *iter is the value of that

element. To decide whether a student passed or failed, we pass that value to fgrade.

Similarly, we changed the code that copies the failing records into fail by writing

fail.push_back(*iter) ; // dereference the iterator to get the element

instead of

fail.push_back(students[i]); // index into the vector to get the element

The erase has gotten simpler, because we now have an iterator to pass directly:

iter = students.erase(iter);

We no longer have to calculate an iterator by adding the index i to students.begin().

The new fact that we used here is easy to overlook, but crucially important: We now assign to

iter the value that erase returns. Why?

A bit of thinking should convince us that removing the element that iter denoted must

invalidate that iterator. After we have called students.erase(iter), we know that iter can no

longer refer to the same element because that element is gone. In fact, calling erase on a

vector invalidates all iterators that refer to elements after the one that was just erased. If you

look back at the diagram in §5.1.1/78, it should be obvious that after we erase the element

marked FAIL, that element is gone, and each of the elements after it has moved. If the

elements have moved, any iterators referring to them must be meaningless as well.

Fortunately, erase returns an iterator that is positioned on the element that follows the one

that we just erased. Therefore, executing

iter = students.erase(iter);

makes iter refer to the element after the erasure, which is exactly what we need.

If we're dealing with an element that did not represent a failing grade, then we still need to

increment iter so that we'll be positioned on the next element for the next trip through the loop.

We do so by incrementing iter in the else branch.

Incidentally, as in §5.1.1/78, we might be tempted to optimize the loop by saving the value of

students.end() to avoid evaluating it each time through the while. In other words, we might

be tempted to change

while (iter != students.end())

to

// this code will fail because of misguided optimization

vector<Student_info>::iterator iter = students.begin(),

 end_iter = students.end();

while (iter != end_iter) {

 // . . .

}

This loop will almost surely fail at run time. Why?

The reason is that if we ever execute students.erase, doing so will invalidate every iterator

after the point erased, including end_iter! Therefore, it is essential that we call students.end

each time through the loop, just as it was essential in §5.1.1/78 to call students.size each

time through the loop.

5.4 Rethinking our data structure for better performance

For small inputs, our implementation works fine. However, as we said in §5.1.1/77, as our

input grows, the performance degrades substantially. Why?

Let's think again about using erase to remove an element from a vector. The library optimizes

the vector data structure for fast access to arbitrary elements. Moreover, we saw in §3.2.3/48

that vectors perform well when growing a vector one element at a time, as long as elements

are added at the end of the vector.

Inserting or removing elements from the interior of a vector is another story. Doing so requires

that all elements after the one inserted or removed be moved in order to preserve fast random

access. Moving elements means that the run time of our new code might be as slow as

quadratic in the number of elements in the vector. For small inputs, we might not notice, but

each time the size of our input doubles, the execution time can quadruple. If we ask our

program to deal with all the students in a school rather than just the students in a class, even

a fast computer will take too long to execute the program.

If we want to do better, we need a data structure that lets us insert and delete elements

efficiently anywhere in the container. Such a container is unlikely to support random access

through indices. Even if it did so, integer indices would be less than useful, because inserting

and deleting elements would have to change the indices of other elements. Now that we know

how to use iterators, we have a way of dealing with such a data structure that does not

provide index operations.

5.5 The list type

By rewriting the code to use iterators, we have removed our reliance on indices. We now need

to reimplement our program using a data structure that will let us delete elements efficiently

from within the container.

The need to insert or delete elements inside a data structure is pretty common. Not

surprisingly, the library provides a type, named list and defined in the <list> header, that is

optimized for this kind of access.

Just as vectors are optimized for fast random access, lists are optimized for fast insertion and

deletion anywhere within the container. Because lists have to maintain a more complicated

structure, they are slower than vectors if the container is accessed only sequentially. That is,

if the container grows and shrinks only or primarily from the end, a vector will outperform a

list. However, if a program deletes many elements from the middle of the container—as our

program does—then lists will be faster for large inputs, becoming much faster as the inputs

grow.

Like a vector, a list is a container that can hold objects of most.any type. As we'll see, lists

and vectors share many operations. As a result, we can often translate programs that operate

on vectors into programs that operate on lists, and vice versa. Often, all that changes is our

variables' types.

One key operation that vectors support, but lists do not, is indexing. As we just saw, we can

write a version of extract_fails that uses vectors to extract records that correspond to failing

students, but that uses iterators instead of indices. It turns out that we can transform that

version of extract_fails to use lists instead of vectors merely by changing the appropriate

types:

// version 4: use list instead of vector

list<Student_info> extract_fails(list<Student_info>& students)

{

 list<Student_info> fail;

 list<Student_info>::iterator iter = students.begin();

 while (iter != students.end()) {

 if (fgrade(*iter)) {

 fail.push_back(*iter);

 iter = students.erase(iter);

 } else

 ++iter;

 }

return fail;

}

If we compare this code with the version from §5.3/82, we see that the only change is to

replace vector by list in the first four lines. So, for example, the return type and the parameter

to the function are now list<Student_info>, as is the local container fail, into which we put the

failing grades. Similarly, the type of the iterator is the one defined by the list class. Hence, we

define iter as the iterator type that is a member of list<Student_info>. The list type is a

template, so we must say what kind of object the list holds by naming that type inside angle

brackets, just as we do when we define a vector.

There are no changes in the program's logic. Of course, our caller will now have to provide us

with a list, and will get a list in return. Moreover, the details of how the library implements the

operations are quite different, because this version operates on lists and the other ones

operate on vectors. When we execute ++iter, we are doing whatever it means to advance the

iterator to the next element in the list. Similarly,

iter = students.erase(iter);

calls the list version of erase and assigns the list iterator returned from erase into iter. The

implementations of the increment and erase operations will surely differ from their vector

counterparts.

5.5.1 Some important differences

One important way in which the operations on lists differ from those on vectors is the effect of

some of the operations on iterators. For example, when we erase an element from a vector,

all iterators that refer to the element erased, or subsequent elements, are invalidated. Using

push_back to append an element to a vector invalidates all iterators referring to that vector.

This behavior follows from the fact that erasing an element moves the following elements, and

appending to a vector might reallocate the entire vector to make room for the new element.

Loops that use these operations must be especially careful to ensure that they have not saved

copies of any iterators that may be invalidated. Inappropriately saving the value of

students.end() is a particularly rich source of bugs.

For lists, on the other hand, the erase and push_back operations do not invalidate iterators

to other elements. Only iterators that refer to the element actually erased are invalidated,

because that element no longer exists.

We have already mentioned that list class iterators do not support full random- access

properties. We'll have much more to say about iterator properties in §8.2.1/144. For now,

what's important to know is that, because of this lack of support, we cannot use the

standard-library sort function to sort values that are stored in a list. Because of this restriction,

the list class provides its own sort member function, which uses an algorithm that is optimized

for sorting data stored in a list. Thus, to sort elements in a list, we must call the sort member

list<Student_info> students;

students.sort(compare);

rather than the global sort function

vector<Student_info> students;

sort(students.begin(),students.end(), compare);

as we do for vectors. It is worth noting that because the compare function operates on

Student_info objects, we can use the same compare function to sort a list of Student_info

records that we used to sort a vector of them.

5.5.2 Why bother?

The code that extracts records for failing students is a good example of the effect of data

structure choices on performance. The code accesses elements sequentially, which generally

implies that a vector is the best choice. On the other hand, we also delete elements from the

interior of the container, thus favoring lists.

As with any performance-related question, the data structure that is "best" depends on

whether performance even matters. Performance is a tricky subject that is generally outside

the scope of this book, but it is worth noting that the choice of data structure can have a

profound effect on a program's performance. For small inputs, lists are slower than vectors.

For large inputs, a program that uses vectors in an inappropriate way can run much more

slowly than it would if it were to use lists. It can be surprising how quickly performance

degrades as the input grows.

To test our programs' performance, we used three files of student records. The first file had

735 records. The second file was ten times as big, and the third, ten times bigger than that, or

73,500 records. The following table records the time, in seconds, that it took to execute the

programs on each file size:

 File size list vector

 735 0.1 0.1

 7,350 0.8 6.7

 73,500 8.8 597.1

For the file with 73,500 records, the list version of the program took less than nine seconds to

run, whereas the vector version took nearly ten minutes. The discrepancy would have been

even greater had there been more failing students.

5.6 Taking strings apart

Now that we've seen some of what we can do with containers, we're going to turn our

attention back to strings. Until now, we've done only a few things with strings: We've created

them, read them, concatenated them, written them, and looked at their size. In each of these

uses, we have dealt with the string as a single entity. Often, this kind of abstract usage is what

we want: We want to ignore the detailed contents of a string. Sometimes, though, we need to

look at the specific characters in a string.

As it turns out, we can think of a string as a special kind of container: It contains only

characters, and it supports some, but not all, of the container operations. The operations that

it does support include indexing, and the string type provides an iterator that is similar to a

vector iterator. Thus, many of the techniques that we can apply to vectors apply also to

strings.

For example, we might want to break a line of input into words, separated from each other by

whitespace (space, tab, backspace, or the end of the line). If we can read the input directly,

we can get the words from the input trivially. After all, that's exactly how the string input

operator executes: It reads characters up to the whitespace character.

However, there are times when we want to read an entire line of input and examine the words

within that line. We'll see examples in §7.3/126 and §7.4.2/131.

Because such an operation might be generally useful, we'll write a function to do it. The

function will take a string and return a vector<string>, which will contain an entry for each

whitespace-separated word in that string. In order to understand this function, you need to

know that strings support indexing much the same way as vectors do. So, for example, if s is

a string that contains at least one character, the first character of s is s[0], and the last

character of s is s[s.size() - 1].

Our function will define two indices, i and j, that will delimit each word in turn. The idea is that

we will locate a word by computing values for i and j such that the word will be the characters

in the range [i, j). For example,

Once we have these indices, we'll use the characters that they delimit to create a new string,

which we will copy into our vector. When we are done, we will return the vector to our caller:

vector<string> split(const string& s)

{

 vector<string> ret;

 typedef string::size_type string_size;

 string_size i = 0;

 // invariant: we have processed characters [original value of i, i)

 while (i != s.size()) {

 // ignore leading blanks

 // invariant: characters in range [original i, current i) are all spaces

 while (i != s.size() && isspace(s[i]))

 ++i;

 // find end of next word

 string_size j = i;

 // invariant: none of the characters in range [original j, current j)is a space

 while (j != s.size() && !isspace(s[j]))

 j++;

 // if we found some nonwhitespace characters

 if (i != j) {

 // copy from s starting at i and taking j - i chars

 ret.push_back(s.substr(i, j - i));

 i = j;

 }

 }

 return ret;

}

In addition to the system headers that we have already encountered, this code needs the

<cctype> header, which defines isspace. More generally, this header defines useful functions

for processing individual characters. The c at the beginning of cctype is a reminder that the

ctype facility is part of C++'s inheritance from C.

The split function has a single parameter, which is a reference to a const string that we'll

name s. Because we will be copying words from s, split does not need to change the string.

As in §4.1.2/54, we can pass a const reference to avoid the cost of copying the string, while

still ensuring that split will not change its argument.

We start off by defining ret, which will hold the words from the input string. The next two

statements define and initialize our first index, i. As we saw in §2.4/22, string::size_type is

the name for the appropriate type to index a string. Because we need to use this type more

than once, we start by defining a shorter synonym for this type, as we did in §3.2.2/43, to

simplify the subsequent declarations. We will use i as the index that finds the start of each

word, advancing i through the input string one word at a time.

The test in the outermost while ensures that once we've processed the last word in the input,

we'll stop.

Inside the while, we start by positioning our two indices. First, we find the first non-space

character in s that is at or after the position currently indicated by i. Because there might be

multiple whitespace characters in the input, we increment i until it denotes a character that is

not whitespace.

There is a lot going on in this statement:

while (i != s.size() && isspace(s[i]))

 ++i;

The isspace function is a predicate that takes a char and returns a value that indicates

whether that char is whitespace. The && operator tests whether both its operands are true,

failing if either of them is false. In this expression, the operation will succeed if i is not equal to

the size of s (meaning that we have not reached the end of the string), and s[i] is a

whitespace character. In that case, we will increment i and check again.

As we described in §2.4.2.2/26, the logical && operation uses a short-circuit strategy for

evaluating its operands. Unlike our earlier examples, this one relies on the short-circuit

property of &&. The binary logical operations (operators && and ||) execute by testing their

left-hand operands first. If that test suffices to determine the overall result, then the right-hand

operand is not evaluated. In the case of the &&, the second condition is evaluated if and only

if the first condition is true. Thus, the condition in the while executes by first checking whether

i != s.size(). Only if this test succeeds does it use i to look at a character in s. Of course, if i is

equal to s.size(), then there are no more characters left to examine, and so we drop out of the

loop.

Once we fall out of this while, we know either that i denotes a character that is not

whitespace, or that we've run out of input without finding such a character.

Assuming that i is still a valid index, the next while will find the space that terminates the

current word in s. We start by creating our other index, j, and initializing it to the value of i. The

next while,

while (j != s.size() && !isspace(s[j]))

 ++j;

executes similarly to the previous one, but this time the while stops when it encounters a

whitespace character. As before, we start by ensuring that j is still in range. If so, we again call

isspace on the character indexed by j. This time, we negate the return from isspace using the

logical negation operator, !. In other words, we want the condition to be true if isspace(s[j]) is

not true.

Having completed the two inner while loops, we know that we have either found another word

or run out of input while looking for a word. If we have run out of input, then both i and j will be

equal to s.size(). Otherwise, we have found a word, which we must push onto ret:

// if we found some nonwhitespace characters

if (i != j) {

 // copy from s starting at i and taking j - i chars

 ret.push_back(s.substr(i, j - i));

 i = j;

}

The call to push_back uses a member of the string class, named substr, that we have not

previously seen. It takes an index and a length, and creates a new string that contains a copy

of characters from the initial string, starting at the index given by the first argument, and

copying as many characters as indicated by its second argument. The substring that we

extract starts at i, which is the first character in the word that we just found. We copy

characters from s starting with the one indexed by i, and continuing until we have copied the

characters in the (half-open) range [i, j). Remembering from §2.6/31 that the number of

elements in a half-open range is the difference between the bounds, we see that we will copy

exactly j - i characters.

5.7 Testing our split function

Having written our function, we'd like to test it. The easiest way to do so is to write a program

that reads a line of input and passes that line to the split function. We can then write the

contents of the vector that split returns. Such a test program will make it easy to inspect the

output, and to verify that the split function generates the words that we expect.

More usefully, this test function should produce the same results as a program that just reads

words from the standard input and writes the words one per output line. We can write this

latter program, run it and our test program on the same input files, and verify that our

programs generate identical output. If so, we can be fairly confident in our split function.

Let's start by writing the test program for split:

int main() {

 string s;

 // read and split each line of input

 while (getline(cin, s)) {

 vector<string> v = split(s);

 // write each word in v

 for (vector<string>::size_type i = 0; i != v.size(); ++i)

 cout << v[i] << endl;

 }

 return 0;

}

This program needs to read the input an entire line at a time. Fortunately, the string library

provides what we need in the getline function, which reads input until it reaches the end of the

line. The getline function takes two arguments. The first is the istream from which to read; the

second is a reference to the string into which to store what is read. As usual, the getline

function returns a reference to the istream from which we read, so that we can test that

istream in a condition. If we hit end-of-file or encounter invalid input, then the return from

getline will indicate failure and we'll break out of the while.

As long as we can read a line of input, we store that line in s and pass it to split, storing the

return value from split in v. Next, we loop through v, writing each string in that vector on a

separate line.

Assuming that we added the proper #includes, including one for our own header that

contained a declaration for split, we could run this function and visually verify that it and split

work as expected. We can do even better, though, by comparing the output of this program

with a program that lets the library do all the work:

int main()

{

 string s;

 while (cin >> s)

 cout << s << endl;

 return 0;

}

This program and the previous one should generate identical output. Here, we let the string

input operator separate the input stream into a series of words, which we write one to a line.

By running both programs on the same, complex input, we can have a good idea that our split

function works.

5.8 Putting strings together

In §1.2/12 and §2.5.4/29, we wrote a program to write someone's name centered in a box of

asterisks. However, we never actually created a string to hold our program's output. Instead,

we wrote the various parts of our output, one at a time, and let the output file combine those

fragments into a picture.

We will now revisit this problem, with the aim of building a single data structure that represents

the entire framed string. This program is a simplified version of one of our favorite examples,

called character pictures. A character picture is a rectangular array of characters that can be

displayed. It is a simplification of what happens in a real application—in this case, applications

based on bitmap graphics. The simplifications are to use characters instead of bits, and to

write onto ordinary files instead of displaying on graphical hardware. The problem builds on an

exercise originally presented in the first edition of Stroustrup's The C++ Programming

Language (Addison-Wesley, 1986), and that we explored in some depth in Ruminations on

C++ (Addison-Wesley, 1997).

5.8.1 Framing a picture

The particular variation of the character-picture problem that we'd like to explore in this

section writes all the words stored in a vector<string>, one to a line, and surrounds these

strings with a border. We'll line the strings up along the left-hand border, and leave a single

space between the edge of asterisks and the words we are writing.

Assume that p is a vector<string> that contains the strings "this is an", " example", "to",

"illustrate", and "framing". Then we would like to have a function named frame, which

behaves in such a way that calling frame(p) yields a value of type vector<string> with

elements that, when written, are

* this is an *

* example *

* to *

* illustrate *

* framing *

Note that the border is rectangular, not ragged, even though the strings themselves are of

different lengths. This fact implies that we'll need a function to find the length of the longest

string in the vector. Let's start there:

string::size_type width(const vector<string>& v)

{

 string::size_type maxlen = 0;

 for (vector<string>::size_type i = 0; i != v.size(); ++i)

 maxlen = max(maxlen, v[i].size());

 return maxlen;

}

This function will iterate through the vector, setting maxlen to the largest size that we've seen

so far. When we fall out of the loop, maxlen will hold the length of the longest string in v.

The only tricky aspect of the frame function is its interface. We know that it will operate on a

vector<string>, but what about the return type? It will be convenient if the function creates a

new picture rather than change the picture it was given:

vector<string> frame(const vector<string>& v) {

 vector<string> ret;

 string::size_type maxlen = width(v);

 string border(maxlen + 4, '*');

 // write the top border

 ret.push_back(border);

 // write each interior row, bordered by an asterisk and a space

 for (vector<string>::size_type i = 0; i != v.size(); ++i) {

 ret.push_back("* " + v[i] +

 string(maxlen - v[i].size(), ' ') + ." *")

 }

 // write the bottom border

 ret.push_back(border);

 return ret;

}

We said that the function will not change the picture that it is passed, so we declare the

parameter as a reference to const. The function will return a vector<string>, which we'll build

in ret. We begin by figuring out how long each output string will be; then we create a string

with that many asterisks, which we'll use to create the top and bottom border.

These borders are four characters longer than the longest string: one each for the right- and

left-hand borders, and another two for the spaces that separate the borders from the strings.

Taking a syntactic cue from the definition of spaces in §1.2/12 that we explained in §1.2/13,

we define border to be a string that contains maxlen + 4 asterisks. We call push__back to

append a copy of border to ret, thereby forming the top border.

Next, we copy the picture that we are framing. We define the index i, which we will use to

walk through v until we've copied each element. In the call to push_back, we use the +

operator from string, which, as we learned in §1.2/13, concatenates its arguments.

To form the output line, we concatenate the right- and left-hand borders with the string that we

want to display, which is stored in v[i]. The third string in our concatenation, string(maxlen -

v[i].size(), ' '), constructs an unnamed, temporary string that holds the right number of blanks.

We construct this string in the same way that we initialized border. We obtain the number of

blanks by subtracting the size of the current string from maxlen.

With this knowledge, we can see that the argument to push_back is a new string that

consists of an asterisk, followed by a space, followed by the current string, followed by

enough spaces to make the string as long as the longest string, followed by another space

and another asterisk.

All that's left is to append the bottom border and return.

5.8.2 Vertical concatenation

What makes character pictures a fun example is that, once we have them, we can do things

with them. We just saw one operation—framing a picture. Another operation is concatenation,

which we can do both vertically and horizontally. We'll look at vertical concatenation here, and

at horizontal concatenation in the next section.

Pictures are naturally organized by rows, in the sense that we represent a picture by a

vector<string>, each element of which is a row. Therefore, concatenating two pictures

vertically is simple: We merely concatenate the vectors that represent them. Doing so will

cause the two pictures to line up along their left margins, which is a reasonable way to define

vertical concatenation.

The only problem is that although there is a string concatenation operation, there is no vector

concatenation operation. As a result, we have to do the work ourselves:

vector<string> vcat(const vector<string>& top,

 const vector<string>& bottom)

{

 // copy the top picture

 vector<string> ret = top;

 // copy entire bottom picture

 for (vector<string>::const_iterator it = bottom.begin();

 it != bottom.end(); ++it)

 ret.push_back(*it);

 return ret;

}

This function uses only facilities that we have already seen: We define ret as a copy of top,

append each element of bottom to ret, and return ret as its result.

The loop in this function implements one form of a common idea, namely, that of inserting a

copy of elements from one container into another. In this particular case, we are appending

the elements, which we can think of as inserting them at the end.

Because this operation is so common, the library offers a way of doing it without writing a

loop. Instead of

for (vector<string>::const_iterator it = bottom.begin();

 it != bottom.end(); ++it)

 ret.push_back(*it);

we can write

ret.insert(ret.end(), bottom.begin(), bottom.end());

with the same effect.

5.8.3 Horizontal concatenation

By horizontal concatenation, we mean taking two pictures, and making a new picture in which

one of the input pictures forms the left part of the new picture, and the other forms the right

part. Before we start, we need to think about what we want to do when the pictures to

concatenate are different sizes. We'll arbitrarily decide that we'll align them along their top

edges. Thus, each row of the output picture will be the result of concatenating the

corresponding rows of the two input pictures. We'll have to pad the left-hand picture's rows to

make them take up the right amount of space in the output picture.

In addition to padding the left-hand picture, we also have to worry about what to do when the

pictures have a different number of rows. For example, if p holds our initial picture, we might

want to concatenate the original value of p horizontally with the result of framing p. That is,

we'd like hcat(p, frame(p)) to produce

this is an **************

example * this is an *

to * to *

illustrate * illustrate *

framing * framing *

Note that the left-hand picture has fewer rows than the right-hand picture. This fact implies

that we will have to pad the output on the left-hand side to account for these missing rows. If

the left-hand picture is longer, we'll just copy the strings from it into the new picture; we won't

bother to pad the (empty) right side with blanks. With this analysis complete, we can write our

function:

vector<string>

hcat(const vector<string>& left, const vector<string>& right)

{

 vector<string> ret;

 // add 1 to leave a space between pictures

 string::size_type width1 = width(left) + 1;

 // indices to look at elements from left and right respectively

 vector<string>::size_type i = 0, j = 0;

 // continue until we've seen all rows from both pictures

 while (i != left.size() || j != right.size()) {

 // construct new string to hold characters from both pictures

 string s;

 // copy a row from the left-hand side, if there is one

 if (i != left.size())

 s = left[i++];

 // pad to full width

 s += string(width1 - s.size(), ' ');

 // copy a row from the right-hand side, if there is one

 if (j != right.size())

 s += right[j++];

 // add s to the picture we're creating

 ret.push_back(s);

 }

 return ret;

}

We start, as we did for frame and vcat, by defining the picture that we'll return. Our next step

is to compute the width to which we must pad the left-hand picture. That width will be one

more than the width of the picture itself, to leave a space between the pictures when we

concatenate them. Next, we iterate through both pictures, copying an element from the first,

padded as necessary, followed by an element from the second.

The only tricky part is taking care of what to do if we run out of elements in one picture before

we run out of elements in the other. Our iteration continues until we have copied all the

elements for each input vector. Hence, the while loop continues until both indices reach the

end of their respective pictures.

If we have not yet exhausted left, we copy its current element into s. Regardless of whether

we copied anything from left, we next call the string compound assignment operator, +=, to

pad the output to the appropriate width. The compound assignment operator defined by the

string library operates as you might expect: It adds the right-hand operand to its left-hand

operand and stores the result in the left-hand side. Of course, "add" here means string

concatenation.

We determine how much to pad by subtracting s.size() from width1. We know that either

s.size() is the size of the string that we copied from left, or it is zero because there was no

entry to copy. In the first case, s.size() will be greater than zero and less than width1,

because we added one to the length of the longest string to account for a space between the

two pictures. Thus, in this case, we'll append one or more blanks to s. If s.size() is zero, then

we'll pad the entire output line.

Having copied and padded the string for the left-hand picture, we need only append the string

from the right-hand picture, assuming that there still is an element from right to copy.

Regardless of whether we added a value from right, we push s onto the output vector, and

continue until we've processed both input vectors— remembering to return to our caller the

picture that we've created.

It is important to note that the correct behavior of our program depends on the fact that s is

local to the while loop. Because s is declared inside the while, it is created, with a null value,

and destroyed on each trip through the loop.

5.9 Details

Containers and iterators: The standard library is designed so that similar operations on

different containers have the same interface and the same semantics. The containers we

have used so far are all sequential containers. We'll see in Chapter 7 that the library also

provides associative containers. All the sequential containers and the string type provide the

following operations:

container<T>::iterator

container<T>::const_iterator

The name of the type of the iterator on this container.

container<T>::size_type

The name of the appropriate type to hold the size of the largest possible instance of this

container.

c.begin()

c.end()

Iterators referring to the first and (one past) the last element in the container.

c.rbegin()

c.rend()

Iterators referring to the last and (one beyond) the first element in the container that grant

access to the container's elements in reverse order.

container<T> c;

container<T> c(c2);

Defines c as a container that is empty or a copy of c2 if given.

container<T> c(n);

Defines c as a container with n elements that are value-initialized (§7.2/125) according to

the type of T. If T is a class type, that type will control how to initialize the elements. If T is a

built-in arithmetic type, then the elements will be initialized to 0.

container<T> c(n, t);

Defines c as a container with n elements that are copies of t.

container<T> c(b, e);

Creates a container that holds a copy of the elements denoted by iterators in the range [b,

e).

c = c2

Replaces the contents of container c with a copy of the container c2.

c.size()

Returns the number of elements in c as a size_type.

c.empty()

Predicate that indicates whether c has no elements.

c.insert(d, b, e)

Copies elements denoted by iterators in the range [b, e) and inserts them into c immediately

before d.

c.erase(it)

c.erase(b, e)

Removes the element denoted by it or the range of elements denoted by [b, e) from the

container c. This operation is fast for list but can be slow for vector and string, because for

these types it involves copying all the elements after the one that is removed. For list,

iterators to the element(s) that are erased are invalidated. For vector and string, all iterators

to elements after the one erased are invalidated.

c.push_back(t)

Adds an element to the end of c with the value t.

Containers that support random access, and the string type, also provide the following:

c[n]

Fetches the character at position n from the container c.

Iterator operations:

*it

Dereferences the iterator it to obtain the value stored in the container at the position that it

denotes. This operation is often combined with . to obtain a member of a class object, as in

(*it).x, which yields the member x of the object denoted by the iterator it. * has lower

precedence than . and the same precedence as ++ and —.

it->x

Equivalent to (*it).x, which returns the member x denoted by the object obtained by

dereferencing the iterator it. Same precedence as the . operator.

++i

it++

Increments the iterator so that it denotes the next element in the container.

b == e

b != e

Compares two iterators for equality or inequality.

The string type offers iterators that support the same operations as do iterators on vectors.

In particular, string supports full random access, about which we'll learn more in Chapter 8. In

addition to the operations on containers, string also provides:

s.substr(i, j)

Creates a new string that holds a copy of the characters in s with indices in the range [i, i +

j).

getline(is, s)

Reads a line of input from is and stores it in s.

s += s2

Replaces the value of s by s + s2.

The vector type offers the most powerful iterators, called random-access iterators, of any of

the library containers. We'll learn more about these in Chapter 8.

Although all the functions we've written have relied on dynamically allocating our vector

elements, there are also mechanisms for preallocating elements, and an operation to direct

the vector to allocate, but not to use, additional memory in order to avoid the overhead of

repeated memory allocations.

v.reserve(n)

Reserves space to hold n elements, but does not initialize them. This operation does not

change the size of the container. It affects only the frequency with which vector may have to

allocate memory in response to repeated calls to insert or push_back.

v.resize(n)

Gives v a new size equal to n. If n is smaller than the current size of v, elements beyond n

are removed from the vector. If n is greater than the current size, then new elements are

added to v and initialized as appropriate to the type in v.

The list type is optimized for efficiently inserting and deleting elements at any point in the

container. The operations on lists and list iterators include those described in §5.9/96. In

addition,

l.sort()

l.sort(cmp)

Sorts the elements in l using the < operator for the type in the list, or the predicate cmp.

The <cctype> header provides useful functions for manipulating character data:

isspace(c) true if c is a whitespace character.

isalpha(c) true if c is an alphabetic character.

isdigit(c) true if c is a digit character.

isalnum(c) true if c is a letter or a digit.

ispunct(c) true if c is a punctuation character.

isupper(c) true if c is an uppercase letter.

islower(c) true if c is a lowercase letter.

toupper(c) Yields the uppercase equivalent to c

tolower(c) Yields the lowercase equivalent to c

Exercises

5-0. Compile, execute, and test the programs in this chapter.

5-1. Design and implement a program to produce a permuted index. A permuted index is one

in which each phrase is indexed by every word in the phrase. So, given the following input,

The quick brown fox

jumped over the fence

the output would be

 The quick brown fox

jumped over the fence

The quick brown fox

 jumped over the fence

 jumped over the fence

 The quick brown fox

 jumped over the fence

 The quick brown fox

A good algorithm is suggested in The AWK Programming Language by Aho, Kernighan, and

Weinberger (Addison-Wesley, 1988). That solution divides the problem into three steps:

Read each line of the input and generate a set of rotations of that line. Each rotation

puts the next word of the input in the first position and rotates the previous first word

1.

to the end of the phrase. So the output of this phase for the first line of our input would

be

The quick brown fox

quick brown fox The

brown fox The quick

fox The quick brown

Of course, it will be important to know where the original phrase ends and where the

rotated beginning begins.

Sort the rotations.2.

Unrotate and write the permuted index, which involves finding the separator, putting

the phrase back together, and writing it properly formatted.

3.

5-2. Write the complete new version of the student-grading program, which extracts records

for failing students, using vectors. Write another that uses lists. Measure the performance

difference on input files of ten lines, 1,000 lines, and 10,000 lines.

5-3. By using a typedef, we can write one version of the program that implements either a

vector-based solution or a list-based one. Write and test this version of the program.

5-4. Look again at the driver functions you wrote in the previous exercise. Note that it is

possible to write a driver that differs only in the declaration of the type for the data structure

that holds the input file. If your vector and list test drivers differ in any other way, rewrite them

so that they differ only in this declaration.

5-5. Write a function named center(const vector<string>&) that returns a picture in which all

the lines of the original picture are padded out to their full width, and the padding is as evenly

divided as possible between the left and right sides of the picture. What are the properties of

pictures for which such a function is useful? How can you tell whether a given picture has

those properties?

5-6. Rewrite the extract_fails function from §5.1.1/77 so that instead of erasing each failing

student from the input vector v, it copies the records for the passing students to the beginning

of v, and then uses the resize function to remove the extra elements from the end of v. How

does the performance of this version compare with the one in §5.1.1/77?

5-7. Given the implementation of frame in §5.8.1/93, and the following code fragment

vector<string> v;

frame(v);

describe what happens in this call. In particular, trace through how both the width function

and the frame function operate. Now, run this code. If the results differ from your

expectations, first understand why your expectations and the program differ, and then change

one to match the other.

5-8. In the hcat function from §5.8.3/95, what would happen if we defined s outside the scope

of the while? Rewrite and execute the program to confirm your hypothesis.

5-9. Write a program to write the lowercase words in the input followed by the uppercase

words.

5-10. Palindromes are words that are spelled the same right to left as left to right. Write a

program to find all the palindromes in a dictionary. Next, find the longest palindrome.

5-11. In text processing it is sometimes useful to know whether a word has any ascenders or

descenders. Ascenders are the parts of lowercase letters that extend above the text line; in

the English alphabet, the letters b, d, f, h, k, l, and t have ascenders. Similarly, the descenders

are the parts of lowercase letters that descend below the line; In English, the letters g, j, p, q,

and y have descenders. Write a program to determine whether a word has any ascenders or

descenders. Extend that program to find the longest word in the dictionary that has neither

ascenders nor descenders.

6

Using library algorithms

As we saw in Chapter 5, many container operations apply to more than one type of container.

For example, vector, string, and list allow us to insert elements by calling insert and remove

elements by calling erase. These operations have the same interface for each type that

supports them. For that matter, many container operations also apply to the string class.

Every container—as well as the string class—provides companion iterator types, which let us

navigate through a container and examine its elements. Again, the library ensures that every

iterator that supplies an operation does so through the same interface. For example, we can

use the ++ operator to advance any type of iterator from one element to the next; we can use

the * operator to access the element associated with any type of iterator; and so on.

In this chapter, we'll see how the library exploits these common interfaces to provide a

collection of standard algorithms. By using these algorithms, we can avoid writing (and

rewriting) the same code over and over again. More important, we can write programs that are

smaller and simpler than we would write otherwise—sometimes astonishingly so.

Like containers and iterators, algorithms also use consistent interface conventions. This

consistency lets us learn a few of the algorithms and then apply that knowledge to others as

the need arises. In this chapter, we'll use several of the library algorithms to solve problems

related to processing strings and student grades. Along the way, we'll cover most of the core

concepts in the algorithm library.

Unless we say otherwise, the <algorithm> header defines all the algorithms that we introduce

in this chapter.

6.1 Analyzing strings

In §5.8.2/94, we used a loop to concatenate two character pictures:

for (vector<string>::const_iterator it = bottom.begin();

 it != bottom.end(); ++it)

 ret.push_back(*it);

We noted that this loop was equivalent to inserting a copy of the elements of bottom at the

end of ret, an operation that vectors provided directly:

ret.insert(ret.end(), bottom.begin(), bottom.end());

This problem has an even more general solution: We can separate the notion of copying

elements from that of inserting elements at the end of a container, as follows:

copy(bottom.begin(), bottom.end(), back_inserter(ret));

Here, copy is an example of a generic algorithm, and back_inserter is an example of an

iterator adaptor.

A generic algorithm is an algorithm that is not part of any particular kind of container, but

instead takes a cue from its arguments' types about how to access the data it uses. The

standard library's generic algorithms usually take iterators among their arguments, which they

use to manipulate the elements of the underlying containers. So, for example, the copy

algorithm takes three iterators, which we'll call begin, end, and out, and copies all the

elements in the range [begin, end) to a sequence of elements starting at out and extending

as far as necessary. In other words,

copy(begin, end, out);

has the same effect as

while (begin != end)

 *out++ = *begin++;

except that the while body changes the values of the iterators, and copy doesn't.

Before we describe iterator adaptors, we should note that this loop depends on the use of the

postfix version of the increment operators. These operators differ from the prefix versions,

which we have used up to now, in that begin++ returns a copy of the original value of begin,

incrementing the stored value of begin as a side effect. In other words,

it = begin++;

is equivalent to

it = begin;

++begin;

The increment operators have the same precedence as *, and they are both right-associative,

which means that *out++ has the same meaning as *(out++). Thus,

*out++ = *begin++;

is equivalent to the more verbose

{ *out = *begin; ++out; ++begin; }

Let's return to iterator adaptors, which are functions that yield iterators with properties that

are related to their arguments in useful ways. The iterator adaptors are defined in <iterator>.

The most common iterator adaptor is back_inserter, which takes a container as its argument

and yields an iterator that, when used as a destination, appends values to the container. For

example, back_inserter(ret) is an iterator that, when used as a destination, appends

elements to ret. Therefore,

copy(bottom.begin(), bottom.end(), back_inserter(ret));

copies all of the elements of bottom and appends them to the end of ret. After this function

completes, the size of ret will have increased by bottom.size(). Notice that we could not call

// error—ret is not an iterator

copy(bottom.begin(), bottom.end(), ret);

because copy's third argument is an iterator, not a container. Nor could we call

// error - no element at ret.end()

copy(bottom.begin(), bottom.end(), ret.end());

This latter mistake is particularly insidious, because the program will compile. What it does

when you try to run it is another story entirely. The first thing copy will try to do is assign a

value to the element at ret.end(). There's no element there, so what the implementation will

do is anybody's guess.

Why is copy designed this way? Because separating the notions of copying elements and

expanding a container allows programmers to choose which operations to use. For example,

we might want to copy elements on top of elements that already exist in a container, without

changing the container's size. As another example, which we shall see in §6.2.2/112, we

might want to use back_inserter to append elements to a container that are not merely

copies of another container's elements.

6.1.1 Another way to split

Another function that we can write more directly using the standard algorithms is split, which

we saw in §5.6/88. The hard part of writing that function was dealing with the indices that

delimited each word in the input line. We can replace the indices by iterators, and use

standard-library algorithms to do much of the work for us:

// true if the argument is whitespace, false otherwise

bool space(char c)

{

 return isspace(c);

}

// false if the argument is whitespace, true otherwise

bool not_space(char c)

{

 return !isspace(c);

}

vector<string> split(const string& str)

{

 typedef string::const_iterator iter;

 vector<string> ret;

 iter i = str.begin();

 while (i != str.end()) {

 // ignore leading blanks

 i = find_if(i, str.end(), not_space);

 // find end of next word

 iter j = find_if(i, str.end(), space);

 // copy the characters in [i, j)

 if (i != str.end())

 ret.push_back(string(i, j));

 i = j;

 }

 return ret;

}

This code uses a lot of new functions, so it will take a bit of explanation. The key idea to keep

in mind is that it implements the same algorithm as the original, using i and j to delimit each

word in str. Once we've found a word, we copy it from str, and push the copy onto the back of

ret.

This time, i and j are iterators, not indices. We use typedef to abbreviate the iterator type, so

that we can use iter instead of the longer string::const_iterator. Although the string type does

not support all of the container operations, it does support iterators. Therefore, we can use the

standard-library algorithms on the characters of a string, just as we can use them on the

elements of a vector.

The algorithm that we use in this example is find_if. Its first two arguments are iterators that

denote a sequence; the third is a predicate, which tests its argument and returns true or false.

The find_if function calls the predicate on each element in the sequence, stopping when it

finds an element for which the predicate yields true.

The standard library provides an isspace function to test whether a character is a space.

However, that function is overloaded, so that it will work with languages, such as Japanese,

that use other character types, such as wchar_t (§1.3/14). It's not easy to pass an overloaded

function directly as an argument to a template function. The trouble is that the compiler

doesn't know which version of the overloaded function we mean, because we haven't supplied

any arguments that the compiler might use to select a version. Accordingly, we'll write our

own predicates, called space and not_space, that make clear which version of isspace we

intend.

The first call to find_if seeks the first nonspace character, which begins a word. Remember

that one or more spaces might begin a line or might separate adjacent words in the input. We

don't want to include these spaces in the output.

After the first call to find_if, i will denote the first nonspace, if any, in str. We use i in the next

call to find_if, which looks for the first space in [i, str.end()). If find_if fails to find a value that

satisfies the predicate, it returns its second argument, which, in this case, is str.end().

Therefore, j will be initialized to denote the blank that separates the next word in str from the

rest of the line, or, if we are on the last word in the line, j will be equal to str.end().

At this point, i and j delimit a word in str. All that's left is to use these iterators to copy the data

from str into ret. In the earlier version of split, we used string::substr to create the copy.

However, that version of split operated on indices, not iterators, and there isn't a version of

substr that operates on iterators. Instead, we construct a new string directly from the iterators

that we have. We do so by using an expression, string(i, j), that is somewhat similar to the

definition of spaces that we explained in §1.2/13. Our present example constructs a string

that is a copy of the characters in the range [i, j). We push this new string onto the back of ret.

It is worth pointing out that this version of the program omits the tests of the index i against

str.size(). Nor are there the obvious equivalent tests of the iterator against str.end(). The

reason is that the library algorithms are written to handle gracefully calls that pass an empty

range. For example, at some point the first call to find_if will set i to the value returned by

str.end(), but there is no need to check i before passing it to the second call to find_if. The

reason is that find_if will look in the empty range [i, str.end()) and will return str.end() to

indicate that there is no match.

6.1.2 Palindromes

Another character-manipulation problem that we can use the library to solve succinctly is

determining whether a word is a palindrome. Palindromes are words that are spelled the

same way front to back as back to front. For example, "civic," "eye," "level," "madam," and

"rotor" are all palindromes.

Here is a compact solution that uses the library:

bool is_palindrome(const string& s)

{

 return equal(s.begin(), s.end(), s.rbegin());

}

The return statement in this function's body calls the equal function and the rbegin member

function, both of which we have not yet seen.

Like begin, rbegin returns an iterator, but this time it is an iterator that starts with the last

element in the container and marches backward through the container.

The equal function compares two sequences to determine whether they contain equal values.

As usual, the first two iterators passed to equal specify the first sequence. The third argument

is the starting point for the second sequence. The equal function assumes that the second

sequence is the same size as the first, so it does not need an ending iterator. Because we

pass s.rbegin() as the starting point for the second sequence, the effect of this call is to

compare values from the back of s to values in the front. The equal function will compare the

first character in s with the last. Then it will compare the second to the next to last, and so on.

This behavior is precisely what we want.

6.1.3 Finding URLs

As the last of our examples of character manipulation, let's write a function that finds Web

addresses, called uniform resource locators (URLs), that are embedded in a string. We might

use such a function by creating a single string that holds the entire contents of a document.

The function would then scan the document and find all the URLs in it. A URL is a sequence

of characters of the form

protocol-name: //resource-name

where protocol-name contains only letters, and resource-name may consist of letters, digits,

and certain punctuation characters. Our function will take a string argument and will look for

instances of :// in that string. Each time we find such an instance, we'll look for the

protocol-name that precedes it, and the resource-name that follows it.

Because we want our function to find all the URLs in its input, we'll want it to return a

vector<string>, with one element for each URL. The function executes by moving the iterator

b through the string, looking for the characters :// that might be a part of a URL. If we find

these characters, it looks backward to find the protocol-name, and it looks forward to find the

resource-name:

vector<string> find_urls(const string& s)

{

 vector<string> ret;

 typedef string::const_iterator iter;

 iter b = s.begin(), e = s.end();

 // look through the entire input

 while (b != e) {

 // look for one or more letters followed by ://

 b = url_beg(b, e);

 // if we found it

 if (b != e) {

 // get the rest of the URL

 iter after = url_end(b, e);

 // remember the URL

 ret.push_back(string(b, after));

 // advance b and check for more URLs on this line

 b = after;

 }

 }

 return ret;

}

We start by declaring ret, which is the vector into which we will put the URLs as we find them,

and by obtaining iterators that delimit the string. We will have to write the url_beg and

url_end functions, which will find the beginning and end of any URL in the input. The url_beg

function will be responsible for identifying whether a valid URL is present and, if so, for

returning an iterator that refers to the first character of the protocol-name. If it does not identify

a URL in the input, then it will return its second argument (e in this case) to indicate failure.

If url_beg finds a URL, the next task is to find the end of the URL by calling url_end. That

function will search from the given position until it reaches either the end of the input or a

character that cannot be part of a URL. It will return an iterator positioned one past the last

character in the URL.

Thus, after the calls to url_beg and url_end, the iterator b denotes the beginning of a URL,

and the iterator after denotes the position one past the last character in the URL:

We construct a new string from the characters in this range, and push that string onto the

back of ret.

All that remains is to increment the value of b and to look for the next URL. Because URLs

cannot overlap one another, we set b to (one past) the end of the URL that we just found, and

continue the while loop until we've looked at all the input. Once that loop exits, we return the

vector that contains the URLs to our caller.

Now we have to think about url_beg and url_end. The url_end function is simpler, so we'll

start there:

string::const_iterator

url_end(string::const_iterator b, string::const_iterator e)

{

 return find_if(b, e, not_url_char);

}

This function just forwards its work to the library find_if function, which we used in §6.1.1/103.

The predicate that we pass to find_if is one that we will write, named not_url_char. It will

return true when passed a character that cannot be in a URL:

bool not_url_char(char c)

{

 // characters, in addition to alphanumerics, that can appear in a URL

 static const string url_ch = "~;/?:@=&$-_.+!*'(),";

 // see whether c can appear in a URL and return the negative

 return !(isalnum(c) ||

 find(url_ch.begin(), url_ch.end(), c) != url_ch.end());

}

Despite being small, this function uses a fair bit of new material. First is the use of the static

storage class specifier. Local variables that are declared to be static are preserved across

invocations of the function. Thus, we will create and initialize the string url_ch only on the first

call to not_url_char. Subsequent calls will use the object that the first call created. Because

url_ch is a const string, its value will not change once we have initialized it.

The not_url_char function also uses the isalnum function, which the <cctype> header

defines. This function tests whether its argument is an alphanumeric character (a letter or a

digit).

Finally, find is another algorithm that we haven't used yet. It is similar to find_if, except that

instead of calling a predicate, it looks for the specific value given as its third argument. As with

find_if, if the value that we want is present, the function returns an iterator denoting the first

occurrence of the value in the given sequence. If the value is not found, then find returns its

second argument.

With this information in hand, we can now understand the not_url_char function. Because we

negate the value of the entire expression before we return it, not_url_char will yield false if c

is a letter, a digit, or any of the characters in url_ch. If c is any other value, the function

returns true.

Now the hard part begins: implementing url_beg. This function is messy, because it must deal

with the possibility that the input might contain :// in a context that cannot be a valid URL. In

practice, we'd probably have a list of acceptable protocol-names and look only for those. For

simplicity, though, we'll limit ourselves to being sure that one or more letters precede the ://

separator, and at least one character follows it:

string::const_iterator

url_beg(string::const_iterator b, string::const_iterator e)

{

 static const string sep = "://";

 typedef string::const_iterator iter;

 // i marks where the separator was found

 iter i = b;

 while ((i = search(i, e, sep.begin(), sep.end())) != e) {

 // make sure the separator isn't at the beginning or end of the line

 if (i != b && i + sep.size() != e) {

 // beg marks the beginning of the protocol-name

 iter beg = i;

 while (beg != b && isalpha(beg[-1]))

 --beg;

 // is there at least one appropriate character before and after the separator?

 if (beg != i && !not_url_char(i[sep.size()]))

 return beg;

 }

 // the separator we found wasn't part of a URL advance i past this separator

 i += sep.size();

 }

 return e;

}

The easy part is to write the function header. We know that we'll be passed two iterators

denoting the range in which to look, and that we'll return an iterator that denotes the beginning

of the first URL in that range, if one exists. We also declare and initialize a local string, which

will hold the characters that make up the separator that identifies a potential URL. Like url_ch

in the not_url_char function (§6.1.3/107), this string is static and const. Thus, we will not be

able to change the string, and its value will be created only on the first invocation of url_beg.

The function executes by placing two iterators into the string delimited by b and e:

The iterator iwill denote the beginning of the URL separator, if any, and beg will indicate the

beginning of the protocol-name, if any.

The function first looks for the separator, by calling search, a library function that we haven't

used before. This function takes two pairs of iterators: The first pair denotes the sequence in

which we are looking, and the second pair denotes the sequence that we wish to locate. As

with other library functions, if search fails, it returns the second iterator. Therefore, after the

call to search, either i denotes (one past) the end of the input string, or it denotes a : that is

followed by //.

If we found a separator, the next task is to get the letters (if any) that make up the

protocol-name. We first check whether the separator is at the beginning or end of the input. If

the separator is in either of those places, we know that we don't have a URL, because a URL

has at least one character on each side of its separator. Otherwise, we need to try to position

the iterator beg. The inner while loop moves beg backward through the input until it hits either

a nonalphabetic character or the beginning of the string. It uses two new ideas: The first is the

notion that if a container supports indexing, so do its iterators. In other words, beg[-1] is the

character at the position immediately before the one that beg denotes. We can think of beg[-l]

as an abbreviation for *(beg - 1). We'll learn more about such iterators in §8.2.6/148. The

second new idea is the isalpha function, defined in <cctype>, which tests whether its

argument is a letter.

If we were able to advance the iterator over as much as a single character, we assume that

we've found a protocol-name. Before returning beg, we still have to check that there's at least

one valid character following the separator. This test is more complicated. We know that there

is at least one more character in the input, because we're inside the body of an if that

compares the value of i + sep.size() with e. We can access the first such character as

i[sep.size()], which is an abbreviation for *(i + sep.size()). We test whether that character can

appear in a URL by passing the character to not_url_char. This function returns true if the

character is not valid, so we negate the return to check whether the character is valid.

If the separator is not part of a URL, then the function advances i past the separator and

keeps looking.

This code uses the decrement operator, which we mentioned in the operator table in

§2.7/32, but which we have not previously used. It works like the increment operator, but it

decrements its operand instead. As with the increment operator, it comes in prefix and postfix

versions. The prefix version, which we use here, decrements its operand and returns the new

value.

6.2 Comparing grading schemes

In §4.2/61, we presented a grading scheme that based students' final grades, in part, on their

median homework scores. Devious students can exploit this scheme by deliberately not

turning in all their homework assignments. After all, the bottom half of their homework grades

has no effect on their final grade. If they've done enough homework to ensure a good grade,

why not stop doing homework altogether?

In our experience, most students do not exploit this particular loophole. However, we did have

occasion to teach one class that gleefully and openly did so. We wondered whether the

students who skipped homework had, on average, different final grades than those who did all

the homework. While we were thinking about how to answer that question, we decided that it

might be interesting to see what the answer would be if we used one of two alternative

grading schemes:

Using the average instead of the median, and treating those assignments that the

student failed to turn in as zero

Using the median of only the assignments that the student actually submitted

For each of these grading schemes, we wanted to compare the median grade of the students

who turned in all their homework with the median grade of the students who missed one or

more assignments. We wound up with a program that had to solve two distinct subproblems:

Read all the student records, separating the students who did all the homework from

the others.

1.

Apply each of the grading schemes to all the students in each group, and report the

median grade of each group.

2.

6.2.1 Working with student records

Our first subproblem is to read and classify the student records. Fortunately, we already have

some code we can use in solving this part of the problem: We can use the Student_info type

from §4.2.1/61 and the associated read function from §4.2.2/62 to read the student data

records. What we don't have yet is a function that checks whether a student has done all the

homework. Writing such a function is easy:

bool did_all_hw(const Student_info& s)

{

return ((find(s.homework.begin(), s.homework.end(), 0))

 == s.homework.end());

}

This function looks in s.homework to see whether any of the values stored there is 0.

Because we give at least partial credit for any assignment that is turned in, a 0 grade means

that the assignment was not submitted. We compare the return from find with

homework.end(). As usual, find returns its second argument if it fails to find the value that it

seeks.

With these two functions, writing code to read and separate the student records is simplicity

itself. We'll read each student record, check whether the student did all the homework, and

append the record to one of two vectors, which, for want of a better idea, we'll name did and

didnt. While we're at it, we'll check that neither vector is empty, so that we'll know that our

analysis will actually tell us something useful:

vector<Student_info> did, didnt;

Student_info student;

// read all the records, separating them based on whether all homework was done

while (read(cin, student)) {

 if (did_all_hw(student))

 did.push_back(student);

 else

 didnt.push_back(student);

}

// check that both groups contain data

if (did.empty()) {

 cout << "No student did all the homework!" << endl;

 return 1;

}

if (didnt.empty()) {

 cout << "Every student did all the homework!" << endl;

 return 1;

}

The only new idea here is the empty member function, which yields true if the container is

empty and false otherwise. It is a better idea to use this function to check for an empty

container than it is to compare the size with 0, because for some kinds of containers, it might

be more efficient to check whether the container has any elements than to figure out exactly

how many elements there are.

6.2.2 Analyzing the grades

We now know how to read and classify student records into the did and didnt vectors. The

next step is to analyze them, which means we need to think a little about how to structure the

analysis.

We know that we have three analyses to perform, and each analysis has two parts, which

analyze separately the students who did and who didn't do all the homework. Because we will

do each analysis on two sets of data, we certainly want to make each analysis its own

function. However, there are some operations, such as reporting in a common format, that we

are going to want to do on pairs of analyses, rather than on individual analyses. Evidently,

we'll want to make writing the results of each pair of analyses into a function as well.

The tricky part is that we want to call the function that writes the analysis results three times,

once for each kind of analysis. We want that function to call the appropriate analysis function

twice, once each for the did and didnt objects. However, we want the function that generates

the reports to call a different analysis function each time we call it! How do we arrange that?

The easiest solution is to define three analysis functions and pass each one as an argument

to the reporting function. Remember that we've used such arguments already, such as when

we passed the compare function to the library sort routine in §4.2.2/64. In this case, we want

our output routine to take five arguments:

The stream on which to write the output

A string that represents the name of the analysis

The function to use for the analysis

Two arguments, each of which is one of the vectors that we want to analyze

For example, let's assume that the first analysis, which looks at the medians, is done by a

function called median_analysis. Then, we'd like to report the results for each group of

students by executing

write_analysis(cout, "median", median_analysis, did, didnt);

Before we define write_analysis, let's define median_analysis. We would like to give that

function a vector of student records, and we would like it to compute the students' grades

according to the normal grading scheme and to return the median of those grades. We can

define that function as follows:

// this function doesn't quite work

double median_analysis(const vector<Student_info>& students)

{

 vector<double> grades;

 transform(students.begin(), students.end(),

 back_inserter(grades), grade);

 return median(grades);

}

Although this function might appear difficult at first glance, it introduces only one new idea,

namely the transform function. This function takes three iterators and a function. The first two

iterators specify a range of elements to transform; the third iterator is the destination into

which to put the result of running the function.

When we call transform, we are responsible for ensuring that the destination has room for the

values from the input sequence. In this case, there is no problem, because we obtain the

destination by calling back_inserter (§6.1/102), thereby arranging that transform's results will

be appended to grades, which will automatically grow as necessary to accommodate the

results.

The fourth argument to transform is a function that transform applies to each element of the

input sequence to obtain the corresponding element of the output sequence. Therefore, when

we call transform in this example, the effect is to apply the grade function to each element of

students, and to append each grade to the vector named grades. When we have all these

students' grades, we call median, which we defined in §4.1.1/53, to compute their median.

There's only one problem: As the comment notes, this function doesn't quite work.

One reason that it doesn't work is that there are several overloaded versions of the grade

function. The compiler doesn't know which version to call, because we haven't given grade

any arguments. We know that we want to call the version from §4.2.2/63, but we need a way

to tell the compiler to do so.

The other reason is that the grade function will throw an exception if any student did no

homework at all, and the transform function does nothing about exceptions. If an exception

occurs, the transform function will be stopped at the point of the exception, and control will

return to median_analysis. Because median_analysis doesn't handle the exception either,

the exception will continue to propagate outward. The effect will be that this function will also

exit prematurely, passing control to its caller, and so on, until control reaches an appropriate

catch. If there is no such catch, as would be likely in this case, the program itself is

terminated, and the message that was thrown is printed (or not, depending on the

implementation).

We can solve both problems by writing an auxiliary function that will try the grade function

and handle the exception. Because we are calling the grade function explicitly, rather than

passing it as an argument, the compiler will be able to figure out which version we mean:

double grade_aux(const Student_info& s)

{

 try {

 return grade(s);

 } catch (domain_error) {

 return grade(s.midterm, s.final, 0) ;

 }

}

This function will call the version of grade from §4.2.2/63. If an exception occurs, we will

catch it and call the version of grade, from §4.1/52, that takes three doubles that represent

the exam scores and overall homework grade. Thus, we'll assume that students who did no

homework at all got a 0 grade on their homework, but their exams still count. Now, we can

rewrite the analysis function to use grade_aux:

// this version works fine

double median_analysis(const vector<Student_info>& students)

{

 vector<double> grades;

 transform(students.begin(), students.end(),

 back_inserter(grades), grade_aux);

 return median(grades);

}

Having seen what an analysis routine looks like, we are now in a position to define

write_analysis, which uses an analysis routine to compare two sets of students:

void write_analysis(ostream& out, const string& name,

 double analysis(const vector<Student_info>&),

 const vector<Student_info>& did,

 const vector<Student_info>& didnt)

{

 out << name << ": median(did) = " << analysis(did) <<

 ", median(didnt) = " << analysis(didnt) << endl;

}

Again, this function is surprisingly small, although it does introduce two new ideas. The first is

how to define a parameter that represents a function. The parameter definition for analysis

looks just like the function declaration that we wrote in §4.3/67. (Actually, as we shall learn in

§10.1.2/172, there is slightly more going on here than meets the eye. The additional detail

doesn't affect the current discussion directly.)

The other new idea is the return type, void. The built-in type void can be used only in a few

restricted ways, one of which is to name a return type. When we say a function "returns" a

void, we're really saying that it has no return value. We can exit from such a function by

executing a return statement with no value, such as

return;

or, as we do here, by falling off the end of the function. Ordinarily, we cannot just fall off the

end of a function, but the language allows functions that return void to do so. At this point, we

can write the rest of our program:

int main()

{

 // students who did and didn't do all their homework

 vector<Student_info> did, didnt;

 // read the student records and partition them

 Student_info student;

 while (read(cin, student)) {

 if (did_all_hw(student))

 did.push_back(student);

 else

 didnt.push_back(student);

 }

 // verify that the analyses will show us something

 if (did.empty()) {

 cout << "No student did all the homework!" << endl;

 return 1;

 }

 if (didnt.empty()) {

 cout << "Every student did all the homework!" << endl;

 return 1;

 }

 // do the analyses

 write_analysis(cout, "median", median_analysis, did, didnt);

 write_analysis(cout, "average", average_analysis, did, didnt);

 write_analysis(cout, "median of homework turned in",

 optimistic_median_analysis, did, didnt);

 return 0;

}

All that remains is to write average_analysis and optimistic_median_analysis.

6.2.3 Grading based on average homework grade

We would like the average_analysis function to compute the students' grades by using the

average homework grade, rather than the median. Therefore, the logical first step is to write a

function to compute the average of a vector, with the aim of using it instead of median for

grade computation:

double average(const vector<double>& v)

{

 return accumulate(v.begin(), v.end(), 0.0) / v.size();

}

This function uses accumulate, which, unlike the other library algorithms we've used, is

declared in <numeric>. As this header's name implies, it offers tools for numeric computation.

The accumulate function adds the values in the range denoted by its first two arguments,

starting the summation with the value given by its third argument.

The type of the sum is the type of the third argument, so it is crucially important for us to use

0.0, as we did here, instead of 0. Otherwise, the result would be an int, and any fractional part

would be lost.

Having used accumulate to generate the sum of all the elements in the range, we divide that

sum by v.size(), which is the number of elements in the range. The result of that division, of

course, is the average, which we return to our caller.

Once we have the average function, we can use it to implement the average_grade function

to reflect this alternative grading policy:

double average_grade(const Student_info& s)

{

 return grade(s.midterm, s.final, average(s.homework));

}

This function uses the average function to compute an overall homework grade, which it then

gives to the grade function from §4.1/52 to use in computing the final grade.

With this infrastructure in place, the average_analysis function is simplicity itself:

double average_analysis(const vector<Student_info>& students)

{

 vector<double> grades;

 transform(students.begin(), students.end(),

 back_inserter(grades), average_grade);

 return median(grades);

}

The only difference between this function and median_analysis (§6.2.2/113) is its name and

its use of average_grade instead of grade_aux.

6.2.4 Median of the completed homework

The last analysis scheme, optimistic_median_analysis, gets its name from the optimistic

assumption that the students' grades on the homework that they didn't turn in would have

been the same as the homework that they did turn in. With that assumption, we would like to

compute the median of just the homework that each student submitted. We'll call this

computation an optimistic median, and we'll begin by writing a function to compute it. Of

course, we have to contend with the possibility that a student did no homework at all, in which

case we'll use 0 as the overall homework grade:

// median of the nonzero elements of s.homework, or 0 if no such elements exist

double optimistic_median(const Student_info& s)

{

 vector<double> nonzero;

 remove_copy(s.homework.begin(), s.homework.end(),

 back_inserter(nonzero), 0);

 if (nonzero.empty())

 return grade(s.midterm, s.final, 0);

 else

 return grade(s.midterm, s.final, median(nonzero));

}

This function works by extracting the nonzero elements from the homework vector and

putting them into a new vector, called nonzero. Once we have the nonzero homework grades,

we call the version of grade defined in §4.1/52 to compute the final score based on the

median of the homework assignments that were actually submitted.

The only new idea in this function is how we get values into nonzero, which we do by calling

the remove_copy algorithm. To understand the call to remove_copy, you may find it useful to

know that the library provides "copying" versions of many of the algorithms. So, for example,

remove_copy does what remove does, but copies its results to an indicated destination.

The remove function finds all values that match a given value and "removes" those values

from the container. All the values in the input sequence that are not "removed" will be copied

into the destination. We'll have more to say shortly about what "remove" means in this

context.

The remove_copy function takes three iterators and a value. As with most algorithms, the first

two iterators denote the input sequence. The third denotes the beginning of the destination for

the copy. As with copy, the remove_copy algorithm assumes that there is enough space in

the destination to hold all the elements that are copied. We call back_inserter to grow

nonzero as needed.

We should now be able to see that the effect of the remove_copy call is to copy into nonzero

all the nonzero elements in s.homework. We then check whether v is empty, and if not, we

do the normal grade calculation based on the median of the nonzero grades. If v is empty,

then we use 0 as the homework grade.

Of course, to complete our analysis, we need to write an analysis function to call our

optimistic_median function. We leave doing so as an exercise.

6.3 Classifying students, revisited

In Chapter 5, we looked at the problem of copying records with failing grades into a separate vector

and then removing those records from the existing vector. The obvious, easy approach to this

problem proved to have abysmal performance as the input size grew. We went on to show how to

solve the performance problem by using a list instead of a vector, but we also promised to revisit

the problem and show an algorithmic solution that would perform similarly to the revised data

structure.

We can use the algorithm library to demonstrate two other solutions. The first is slightly slower

because it uses a pair of library algorithms and visits every element twice. We can do better by

using a more specialized library algorithm that will let us solve the problem in a single pass.

6.3.1 A two-pass solution

Our first approach will use a strategy similar to the one that we used in §6.2.4/115, when we wanted

only the nonzero homework grades. In that case, we didn't want to change homework itself, so we

used remove_copy to put copies of the nonzero homework grades into a separate vector. In our

current problem, we need both to copy and remove the nonzero elements:

vector<Student_info>

 extract_fails(vector<Student_info>& students) {

 vector<Student_info> fail;

 remove_copy_if(students.begin(), students.end(),

 back_inserter(fail), pgrade);

 students.erase(remove_if(students.begin()), students.end(),

 fgrade), students.end());

 return fail;

}

The interface to the program is identical to that from §5.3/82, which presented the obvious

vector-based solution that used iterators instead of indices. As in that solution, we'll use the vector

that we were passed to hold grades for students who passed, and define fail to hold the failing

grades. There the similarities end.

In the original program, we used an iterator named iter to march through the container, copying the

records with failing grades into fail, and using the erase member to erase them from students. This

time, we use the remove_copy_if function to copy the failing grades into fail. That function operates

as did the remove_copy function that we used in §6.2.4/116, except that it uses a predicate as its

test, rather than a value. We give it a predicate that inverts the result of calling fgrade (§5.1/75):

bool pgrade(const Student_info& s)

{

 return !fgrade(s);

}

When we pass a predicate to remove_copy_if, we are asking it "remove" each element that

satisfies the predicate. In this context, "removing" an element means not copying it, so we copy only

those elements that do not satisfy the predicate. Therefore, passing pgrade to remove_copy_if

copies only the student records with failing grades.

The next statement is somewhat complicated. First, we call remove_if to "remove" the elements

that correspond to failing grades. Again, the quotes around "remove" are because nothing is actually

removed. Instead, remove_if copies all the elements that do not satisfy the predicate—in this case,

all the student records with passing grades.

This call is tricky to understand because remove_if uses the same sequence as its source and

destination. What it really does is copy to the beginning of the sequence the elements that don't

meet the predicate. For example, suppose we started with seven students with grades as follows:

Then the call to remove_if would leave the first two records untouched, because they're already in

the right places. It would "remove" the next two records by treating them as free space to be

overwritten by the next records that should be kept. So, when it sees the fifth record, which

represents a student who passed, it would copy that record into the now free position that used to

hold the first of the "removed" failing records, and so on:

The result in this case would be to copy the four passing records to the beginning of the sequence,

leaving the remaining three records untouched. So that we can know how much of the sequence is

still relevant, remove_if returns an iterator that refers to one past the last element that it did not

"remove":

Next, we need to erase these unneeded records from students. We have not used this version of

erase before. It takes two iterators, and erases all the elements in the range delimited by those

iterators. If we erase the elements between the iterator returned from the call to remove_if and

students.end(), we are left with just the passing records:

6.3.2 A single-pass solution

Our first algorithmic solution performs pretty well, but we should be able to do slightly better. The

reason is that the solution in §6.3.1/117 calculates the grade for every element in students twice:

once from remove_copy_if and a second time from remove_if.

Although there is no library algorithm that does exactly what we want, there is one that approaches

our problem from a different angle: It takes a sequence and rearranges its elements so that the

ones that satisfy a predicate precede the ones that do not satisfy it.

There are really two versions of this algorithm, which are named partition and stable_partition. The

difference is that partition might rearrange the elements within each category, and stable_partition

keeps them in the same order aside from the partitioning. So, for example, if the student names

were already in alphabetical order, and we wanted to keep them that way within each category, we

would need to use stable_partition rather than partition.

Each of these algorithms returns an iterator that represents the first element of the second section.

Therefore, we can extract the failing grades this way:

vector<Student_info>

extract_fails(vector<Student_info>& students)

{

 vector<Student_info>::iterator iter =

 stable_partition(students.begin(), students.end(), pgrade);

 vector<Student_info> fail(iter, students.end());

 students.erase(iter, students.end());

 return fail;

}

To understand what is going on here, let's start with our hypothetical input data again:

After calling stable_partition, we would have

We construct fail from a copy of the failing records, which are the ones in the range [iter,

students.end())., and then erase those elements from students.

When we ran our algorithm-based solutions, they had roughly the same overall performance as the

list-based solution. As expected, once the input was large enough, the algorithm and list-based

solutions were substantially better than the vector solution that used erase. The two algorithmic

solutions are good enough that the time consumed by the input library dominated the timings for

input files up to about 75,000 records. To compare the effects of the two strategies in extract_fails,

we separately analyzed the performance of just this portion of the program. Our timings confirmed

that the one-pass algorithm ran about twice as fast as the two-pass solution.

6.4 Algorithms, containers, and iterators

There is a fact that is crucial to understand in using algorithms, iterators, and containers:

Algorithms act on container elements—they do not act on containers.

The sort, remove_if, and partition functions all move elements to new positions in the

underlying container, but they do not change the properties of the container itself. For

example, remove_if does not change the size of the container on which it operates; it merely

copies elements around within the container.

This distinction is especially important in understanding how algorithms interact with the

containers that they use for output. Let's look in more detail at our use of remove_if in

§6.3.1/117. As we've seen, the call

remove_if(students.begin(), students.end(), fgrade)

did not change the size of students. Rather, it copied each element for which the predicate

was false to the beginning of students, and left the rest of the elements alone. When we need

to shorten the vector to discard those elements, we must do so ourselves. In our example, we

said

students.erase(remove_if(students.begin(), students.end(), fgrade),

 students.end());

Here, erase changes the vector by removing the sequence indicated by its arguments. This

call to erase shortens students so that it contains only the elements we want. Note that erase

must be a member of vector, because it acts directly on the container, not just on its

elements.

Similarly, it is important to be aware of the interaction between iterators and algorithms, and

between iterators and container operations. We've already seen, in §5.3/83 and §5.5.1/86,

that container operations such as erase and insert invalidate the iterator for the element

erased. More important, in the case of vectors and strings, operations such as erase or

insert also invalidate any iterator denoting elements after the one erased or inserted.

Because these operations can invalidate iterators, we must be careful about saving iterator

values if we are using these operations.

Similarly, functions such as partition or remove_if, which can move elements around within

the container, will change which element is denoted by particular iterators. After running one

of these functions, we cannot rely on an iterator continuing to denote a specific element.

6.5 Details

Type modifiers:

static type variable;

For local declarations, declares variable with static storage class. The value of variable

persists across executions of this scope and is guaranteed to be initialized before the

variable is used for the first time. When the program exits from the scope, the variable

keeps its value until the next time the program enters that scope. We'll see in §13.4/244 that

the meaning of static varies with context.

Types: The built-in type void can be used in a restricted number of ways, one of which is to

indicate that a function yields no return value. Such functions can be exited through a return;

that has no value or by falling off the end of the function.

Iterator adaptors are functions that yield iterators. The most common are the adaptors that

generate insert_iterators, which are iterators that grow the associated container dynamically.

Such iterators can be used safely as the destination of a copying algorithm. They are defined

in header <iterator>:

back_inserter(c)

Yields an iterator on the container c that appends elements to c. The container must

support push_back, which the list, vector, and the string types all do.

front_inserter(c)

Like back_inserter, but inserts at the front of the container. The container must support

push_front, which list does, but string and vector do not.

inserter(c, it)

Like back_inserter, but inserts elements before the iterator it.

Algorithms: Unless otherwise indicated, <algorithm> defines these algorithms:

accumulate(b, e, t)

Creates a local variable and initializes it to a copy of t (with the same type as t, which means

that the type of t is crucially important to the behavior of accumulate), adds each element in

the range [b, e) to the variable, and returns a copy of the variable as its result. Defined in

<numeric>.

find(b, e, t)

find_if(b, e, p)

search(b, e, b2, e2)

Algorithms to look for a given value in the sequence [b, e). The find algorithm looks for the

value t; the find_if algorithm tests each element against the predicate p; the search

algorithm looks for the sequence denoted by [b2, e2).

copy(b, e, d)

remove_copy(b, e, d, t)

remove_copy_if(b, e, d, p)

Algorithms to copy the sequence from [b, e) to the destination denoted by d. The copy

algorithm copies the entire sequence; remove_copy copies all elements not equal to t; and

remove_copy_if copies all elements for which the predicate p fails.

remove_if(b, e, p)

Arranges the container so that the elements in the range [b, e) for which the predicate p is

false are at the front of the range. Returns an iterator denoting one past the range of these

"unremoved" elements.

remove(b, e, t)

Like remove_if, but tests which elements to keep against the value t.

transform(b, e, d, f)

Runs the function f on the elements in the range [b, e), storing the result of f in d.

partition(b, e, p) stable_partition(b, e, p)

Partitions the elements in the range [b, e), based on the predicate p, so that elements for

which the predicate is true are at the front of the container. Returns an iterator to the first

element for which the predicate is false, or e if the predicate is true for all elements. The

stable_partition function maintains the input order among the elements in each partition.

Exercises

6-0. Compile, execute, and test the programs in this chapter.

6-1. Reimplement the frame and hcat operations from §5.8.1/93 and §5.8.3/94 to use

iterators.

6-2. Write a program to test the find_urls function.

6-3. What does this program fragment do?

vector<int> u(10, 100);

vector<int> v;

copy(u.begin(), u.end(), v.begin());

Write a program that contains this fragment, and compile and execute it.

6-4. Correct the program you wrote in the previous exercise to copy from u into v. There are

at least two possible ways to correct the program. Implement both, and describe the relative

advantages and disadvantages of each approach.

6-5. Write an analysis function to call optimistic_median.

6-6. Note that the function from the previous exercise and the functions from §6.2.2/113 and

§6.2.3/115 do the same task. Merge these three analysis functions into a single function.

6-7. The portion of the grading analysis program from §6.2.1/110 that read and classified

student records depending on whether they did (or did not) do all the homework is similar to

the problem we solved in extract_fails. Write a function to handle this subproblem.

6-8. Write a single function that can be used to classify students based on criteria of your

choice. Test this function by using it in place of the extract_fails program, and use it in the

program to analyze student grades.

6-9. Use a library algorithm to concatenate all the elements of a vector<string>.

7

Using associative containers

All the containers that we have used until now have been sequential containers, whose

elements remain in the sequence that we choose for them. When we use push_back or

insert to add elements to a sequential container, each element will stay where we put it until

we do something to the container that reorders the elements.

Some kinds of programs are hard to write efficiently if we restrict ourselves to sequential

containers. For example, if we have a container of integers, and we wish to write a program

that determines whether any element of the container has the value 42, we have two plausible

strategies—neither of which is ideal. One alternative is to inspect every element of the

container until we find 42 or run out of elements. This approach is straightforward, but

potentially slow—especially if the container has many elements. The other alternative is for us

to keep the container in an appropriate order and devise an efficient algorithm to find the

element we seek. This approach can yield fast searches, but such algorithms are not easy to

devise. In other words, we must live with a slow program, or come up with our own

sophisticated algorithm. Fortunately, as we'll see in this chapter, the library offers a third

alternative.

7.1 Containers that support efficient look-up

Instead of storing data in a sequential container, we can use an associative container. Such

containers automatically arrange their elements into a sequence that depends on the values

of the elements themselves, rather than the sequence in which we inserted them. Moreover,

associative containers exploit this ordering to let us locate particular elements much more

quickly than do the sequential containers, without our having to keep the container ordered by

ourselves.

Associative containers offer efficient ways to find an element that contains a particular value,

and might contain additional information as well. The part of each container element that we

can use for these efficient searches is called a key. For example, if we were keeping track of

information about students, we might use the student's name as the key, so that we could find

students efficiently by name.

In the sequential containers, the closest that we have seen to a key is the integer index that

accompanies every element of a vector. However, even these indices are not really keys,

because every time we insert or delete a vector element, we implicitly change the index of

every element after the one that we touched.

The most common kind of associative data structure is one that stores key-value pairs,

associating a value with each key, and that lets us insert and retrieve elements quickly based

on their keys. When we put a particular key-value pair into the data structure, that key will

continue to be associated with the same value until we delete the pair. Such a data structure

is called an associative array. Many languages, such as AWK, Perl, and Sno-bol, have

associative arrays built in. In C++, associative arrays are part of the library. The most common

kind of associative array in C++ is called a map, and, analogous with other containers, it is

defined in the <map> header.

In many ways, maps behave like vectors. One fundamental difference is that the index of a

map need not be an integer; it can be a string, or any other type with values that we can

compare so as to keep them ordered.

Another important difference between associative and sequential containers is that, because

associative containers are self-ordering, our own programs must not do anything that changes

the order of the elements. For that reason, algorithms that change the contents of containers

often don't work for associative containers. In exchange for that restriction, associative

containers offer a variety of useful operations that are impossible to implement efficiently for

sequential containers.

This chapter presents several programming examples that use maps to write compact and

efficient look-up-intensive programs.

7.2 Counting words

As a simple example, think about how we might count the number of times that each distinct

word occurs in our input. With associative arrays, the solution is almost trivial:

int main()

{

 string s;

 map<string, int> counters; // store each word and an associated counter

 // read the input, keeping track of each word and how often we see it

 while (cin >> s)

 ++counters[s];

 // write the words and associated counts

 for (map<string, int>::const_iterator it = counters.begin();

 it != counters.end(); ++it) {

 cout << it->first << "\t" << it->second << endl;

 }

 return 0;

}

As with other containers, we must specify the type of the objects that the map will hold.

Because a map holds key-value pairs, we need to mention not only the type of the values, but

also the type of the keys. So,

map<string, int> counters;

defines counters as a map that holds values of type int that are associated with keys of type

string. We often speak of such a container as "a map from string to int," because we can use

the map by giving it a string as a key, and getting back the associated int data.

The way we define counters captures our intent to associate each word that we read with an

integer counter that records how many times we have seen that word. The input loop reads

the standard input, a word at a time, into s. The interesting part is

++counters[s];

What happens here is that we look in counters, using the word that we just read as the key.

The result of counters[s] is the integer that is associated with the string stored in s. We then

use ++ to increment that integer, which indicates that we have seen the word once more.

What happens when we encounter a word for the first time? In that case, counters will not yet

contain an element with that key. When we index a map with a key that has not yet been

seen, the map automatically creates a new element with that key. That element is

value-initialized, which, for simple types such as int, is equivalent to setting the value to zero.

Thus, when we read a new word for the first time and execute ++counters[s] with that new

word, we are guaranteed that the value of counters[s] will be zero before we increment it.

Incrementing counters[s] will, therefore, correctly indicate that we have seen that word once

so far.

Once we have read the entire input, we must write the counters and the associated words.

We do so in much the same way as we would write the contents of a list or a vector: We

iterate through the container in a for loop, which uses a variable of the iterator type defined by

the map class. The only real difference is in how we write the data in the body of the for

statement:

cout << it->first << "\t" << it->second << endl;

Recall that an associative array stores a collection of key-value pairs. Using [] to access a

map element conceals this fact, because we put the key inside the [] and get back the

associated value. So, for example, counters[s] is an int. However, when we iterate over a

map, we must have a way to get at both the key and the associated value. The map container

lets us do so by using a companion library type called pair.

A pair is a simple data structure that holds two elements, which are named first and second.

Each element in a map is really a pair, with a first member that contains the key and a

second member that contains the associated value. When we dereference a map iterator, we

obtain a value that is of the pair type associated with the map.

The pair class can hold values of various types, so when we create a pair, we say what the

types of the first and second data members should be. For a map that has a key of type K

and a value of type V, the associated pair type is pair<const K, V>.

Note that the pair associated with a map has a key type that is const. Because the pair key is

const, we are prevented from changing the value of an element's key. If the key were not

const, we might implicitly change the element's position within the map. Accordingly, the key

is always const, so that if we dereference a map<string, int>

iterator, we get a pair<const string, int>. Thus, it->first is the current element's key, and

it->second is the associated value. Because it is an iterator, *it is an lvalue (§4.1.3/56), and

therefore it->first and it->second are also lvalues. However, the type of it->first includes

const, which prevents us from changing it.

With this knowledge, we can see that the output statement writes each key (that is, each

distinct word from the input), followed by a tab and the corresponding count.

7.3 Generating a cross-reference table

Once we know how to count how often words occur in the input, a logical next step is to write

a program to generate a cross-reference table that indicates where each word occurs in the

input. This extension requires several changes to our basic program.

First, instead of reading a word at a time, we'll need to read a line at a time, so that we can

associate line numbers with words. Once we're reading lines instead of words, we'll need a

way to break each line into its constituent words. Fortunately, we already wrote such a

function, named split, in §6.1.1/103. We can use this function to turn each input line into a

vector<string>, from which we can extract each word.

Rather than using split directly, we're going to make it a parameter to the cross-reference

function. That way, we leave open the possibility of changing the way we find the words on a

line. For example, we could pass the find_urls function from §6.1.3/105, and use the

cross-reference function to see where URLs appear in the input.

As before, we will use a map with keys that are the distinct words from the input. This time,

however, we will have to associate a more complicated value with each key. Instead of

keeping track of how often the word occurs, we want to know all the line numbers on which

the word occurred. Because any given word may occur on many lines, we will need to store

the line numbers in a container.

When we get a new line number, all we will need to do is append that number to those that we

already have for that word. Sequential access to the container elements will suffice, so we

can use a vector to keep track of line numbers. Therefore, we will need a map from string to

vector<int>.

With these preliminaries out of the way, let's look at the code:

// find all the lines that refer to each word in the input

map<string, vector<int> >

 xref(istream& in,

 vector<string> find_words(const string&) = split)

{

 string line;

 int line_number = 0;

 map<string, vector<int> > ret;

 // read the next line

 while (getline(in, line)) {

 ++line_number;

 // break the input line into words

 vector<string> words = find_words(line);

 // remember that each word occurs on the current line

 for (vector<string>::const_iterator it = words.begin();

 it != words.end(); ++it)

 ret[*it].push_back(line_number);

 }

 return ret;

}

Both the return type and the argument list of this function deserve attention. If you look at the

declaration of our return type and the local variable ret, you will see that we carefully wrote >>

instead of >>. The compiler needs that space, because if it sees >> without intervening

spaces, it will assume that it is looking at an >> operator, rather than at two separate >

symbols.

In the argument list, notice that find_words defines a function parameter, which captures our

intent to pass to xref the function to use to split the input into words. The other interesting

thing is that we say = split after the definition of find_words, which indicates that this

parameter has a default argument. When we give a parameter a default argument, we're

saying that callers can omit that argument if they wish. If they supply an argument, the

function will use it. If they omit the argument, the compiler will substitute the default. Thus,

users can call this function in either of two ways:

xref(cin); // uses split to find words in the input stream

xref(cin, find_urls); // uses the function named find_urls to find words

The function body starts by defining a string variable, named line, which will hold each line of

input as we read it, and an int variable, named line_number, to hold the line number of the

line that we are currently processing. The input loop calls getline (§5.7/91) to read a line at a

time into line. As long as there is input, we increment the line counter and then process each

word in the line.

We begin that processing by declaring a local variable named words, which will hold all the

words from line, and initialize it by calling find_words. That function will be either our split

function (§6.1.1/103), which splits line into its component words, or another function that takes

a string argument and returns a vector<string> result. We continue with a for statement that

visits each element in words, updating the map each time through words.

The for header should be familiar: It defines an iterator, and marches that iterator sequentially

through words. The statement that forms the body of the for may be hard to understand on

first reading,

ret[*it].push_back(line_number);

so we'll pick it apart a bit at a time. The iterator it denotes an element of words, and so *it is

one of the words in the input line. We use that word to index our map. The expression ret[*it]

returns the value stored in the map at the position indexed by *it. That value is a vector<int>,

which holds the line numbers on which this word has appeared so far. We call that vector's

push_back member to append the current line number to the vector.

As we saw in §7.2/125, if this is the first time we've seen this word, then the associated

vector<int> will be value-initialized. Value-initialization of class types is a bit complicated, as

we'll see in §9.5/164; what we need to know is that vectors are value-initialized the same way

that variables of type vector are created when we don't give them an initial value explicitly. In

both cases, the vector is created without any elements. Thus, when we insert a new string

key into the map, it will be associated with an empty vector<int>. The call to push_back will

append the current line number to this initially empty vector.

Having written the xref function, we can use it to generate a cross-reference table:

int main()

{

 // call xref using split by default

 map<string, vector<int> > ret = xref(cin);

 // write the results

 for (map<string, vector<int> >::const_iterator it = ret.begin();

 it != ret.end(); ++it) {

 // write the word

 cout << it->first << " occurs on line(s): ";

 // followed by one or more line numbers

 vector<int>::const_iterator line_it = it->second.begin();

 cout << *line_it; // write the first line number

 ++line_it;

 // write the rest of the line numbers, if any

 while (line_it != it->second.end()) {

 cout << ", " << *line_it;

 ++line_it;

 }

 // write a new line to separate each word from the next

 cout << endl;

 }

 return 0;

}

We expect that this code will look as unfamiliar as the code that updated the map.

Nevertheless, it uses only operations that we've already seen.

We begin by calling xref to build a data structure that contains the numbers of the lines on

which each word appears. We use the default value for the function parameter, so this call to

xref will use split to break the input into words. The rest of the program writes the contents of

the data structure that split returns.

Most of the program is the for statement, the form of which should be familiar from §7.2/124. It

starts at the first element in ret and looks at all the elements in sequence.

As you read the body of the for loop, remember that dereferencing a map iterator yields a

value of type pair. The first element of the pair holds the (const) key, and the second

element is the value associated with that key.

We begin the for loop by writing the word that we're processing and a message:

cout << it->first << " occurs on line(s): ";

That word is the key at the position in the map associated with the iterator it. We get at the

key by dereferencing the iterator and fetching the first element from the pair.

We are justified in writing the message at this point because the only way an element could

have gotten into ret is if it represents a word with one or more references. In this case, we

know for certain that at least one line number will follow the message. We don't know if there

will be more than one, so we are ambiguous about the plural.

Just as it->first is the key, it->second is the associated value, which in this case is a

vector<int> that holds the current word's line numbers. We define line_it as an iterator that we

will use to access the elements of it->second.

We want commas to separate those numbers, but we don't want a stray comma at the end.

Therefore, we must treat either the first or the last element specially. We choose to treat the

first one specially, by writing that element explicitly. It is safe to do so because every element

of ret represents a word with at least one reference to it. Having written an element, we

increment the iterator to indicate that we've done so. Then the while loop iterates through the

remaining elements (if any) of the vector<int>. For each element, it writes a comma, followed

by the value of the element.

7.4 Generating sentences

We'll wrap up this chapter with a slightly more complicated example: We can use a map to

write a program that takes a description of a sentence structure—a grammar—and generates

random sentences that meet that description. For example, we might describe an English

sentence as a noun and a verb, or as a noun, a verb, and an object, and so on.

The sentences that we can construct will be more interesting if we can handle complicated

rules. For example, rather than saying merely that a sentence is a noun followed by a verb,

we might allow noun phrases, where a noun phrase is either simply a noun or an adjective

followed by a noun phrase. As a concrete example, given the following input

Categories Rules

<noun> cat

<noun> dog

<noun> table

<noun-phrase> <noun>

<noun-phrase> <adjective> <noun-phrase>

<adjective> large

<adjective> brown

<adjective> absurd

<verb> jumps

<verb> sits

<location> on the stairs

<location> under the sky

<location> wherever it wants

<sentence> the <noun-phrase> <verb> <location>

our program might generate

the table jumps wherever it wants

The program should always start by finding a rule for how to make a sentence. In this input,

there is only one such rule—the last one in our table:

<sentence> the <noun-phrase> <verb> <location>

This rule says that to make a sentence, we write the word the, a noun-phrase, a verb, and

finally a location. The program begins by randomly selecting a rule that matches

<noun-phrase>. Evidently the program chose the rule

<noun-phrase> <noun>

and then resolved the noun using the rule

<noun> table

The program must still resolve verb and location, which apparently it did by selecting

<verb> jumps

for the verb and

<location> wherever it wants

for the location. Note that this last rule maps a category to several words that wind up in the

generated sentence.

7.4.1 Representing the rules

Our table contains two kinds of entries: categories, which are enclosed in angle brackets, and

ordinary words. Each category has one or more rules; each ordinary word stands for itself.

When the program sees a string enclosed in angle brackets, we know that the string will

represent a category, so we will have to make the program find a rule that matches the

category and expand the right-hand part of that rule. If the program sees words that are

unadorned by angle brackets, then we know that it will be able to place those words directly

into the generated sentence.

Thinking about how our program might operate, it appears that the program will read a

description of how to create sentences, and then randomly generate a sentence. So the first

question is: How should we store the description? When we generate sentences, we need to

be able to match each category to a rule that will expand that category. For example, we first

need to find the rule for how to create a <sentence>; from that rule, we will need to find rules

for <noun-phrase>, <verb>, <location>; and so on. Apparently, we'll want a map that maps

categories to the corresponding rules.

But what kind of map? The categories are easy: We can store them as strings, so the key

type of our map will be string.

The value type is more complicated. If we look at the table again, we can see that any given

rule may be a collection of strings. For example, the category sentence is associated with a

rule that has four components: the word the and three other strings, which are themselves

categories. We know how to represent values of this kind: We can

use a vector<string> to hold each rule. The problem is that each category may appear more

than once in the input. For example, in our sample input description, the category <noun>

appears three times, as do the categories <adjective> and <location>. Because these

categories appear three times, each one will have three matching rules.

The easiest way to manage multiple instances of the same key will be to store each collection

of rules in its own vector. Thus, we'll store the grammar in a map from string to vectors,

which themselves hold vector<string>.

This type is quite a mouthful. Our program will be clearer if we introduce synonyms for our

intermediate types. We said that each rule is a vector<string>, and that each category maps

to a vector of these rules. Our analysis implies that we really want to define three types—one

for the rule, one for a collection of rules, and one for the map:

typedef vector<string> Rule;

typedef vector<Rule> Rule_collection;

typedef map<string, Rule_collection> Grammar;

7.4.2 Reading the grammar

Having resolved how to represent the grammar, let's write a function to read it:

// read a grammar from a given input stream

Grammar read_grammar(istream& in)

{

 Grammar ret;

 string line;

 // read the input

 while (getline(in, line)) {

 // split the input into words

 vector<string> entry = split(line);

 if (!entry.empty())

 // use the category to store the associated rule

 ret[entry[0]].push_back(

 Rule(entry.begin() + 1, entry.end()));

 }

 return ret;

}

The function will read from an input stream and generate a Grammar as output. The while

loop looks like many that we've seen before: It reads a line at a time from in and stores what it

read in line. The while terminates when we run out of input or encounter invalid data.

The body of the while is astonishingly concise. We use the split function from §6.1.1/103 to

break the input into words, and store the resulting vector in a variable called entry. If entry is

empty, we saw a blank input line, so we disregard it. Otherwise, we know that the first element

in entry will be the category that we are defining.

We use this element as the index into ret. The expression ret[entry[0]] yields the object of

type Rule_collection that is associated with the category in entry[0], remembering that a

Rule_collection is a vector, each element of which holds a Rule (or, equivalently, a

vector<string>). Therefore, ret[entry[0]] is a vector, onto the back of which we push the rule

that we just read. That rule is in entry, starting with the second element; the first element in

entry is the category. We construct a new, unnamed Rule, by copying the elements from

entry (except for the first element), and push that newly created Rule onto the back of the

Rule_collection indexed by ret[entry[0]] .

7.4.3 Generating the sentence

Having read all the input, we must next generate a random sentence. We know that our input

will be a grammar, and that we want to produce a sentence. Our output will be a

vector<string> that represents the output sentence.

That's the easy part. The more interesting problem is how the function should work. We know

that initially we'll need to find a rule that corresponds to <sentence>. Moreover, we know that

we are going to build our output in pieces, which we will assemble from various rules and

parts of rules.

In principle, we could concatenate those pieces to form our result. However, because there is

no built-in concatenation operation for vectors, we will start with an empty vector and call

push_back repeatedly on it.

These two constraints—starting with <sentence>, and calling push_back repeatedly on an

initially empty vector—suggest that we are going to want to define our sentence generator in

terms of an auxiliary function, which we will call as follows:

vector<string> gen_sentence(const Grammar& g)

{

 vector<string> ret;

 gen_aux(g, "<sentence>", ret);

 return ret;

}

In effect, the call to gen_aux is a request to use the grammar g to generate a sentence

according to the <sentence> rule, and to append that sentence to ret.

Our remaining task is to define gen_aux. Before we do so, we note that gen_aux will have to

determine whether a word represents a category, which it will do by checking whether the

word is bracketed. We shall, therefore, define a predicate to do so:

bool bracketed(const string& s)

{

return s.size() > 1 && s[0] == '<' && s[s.size() - 1] == '>';

}

The job of gen_aux is to expand the input string that it is given as its second argument by

looking up that string in the grammar that is its first parameter and placing its output into its

third parameter. By "expand" we mean the process that we described in §7.4/129. If our string

is bracketed, we then have to find a corresponding rule, which we'll expand in place of the

bracketed category. If the input string is not bracketed, then the input itself is part of our

output and can be pushed onto the output vector with no further processing:

void

gen_aux(const Grammar& g, const string& word, vector<string>& ret)

{

 if (!bracketed(word)) {

 ret.push_back(word);

 } else {

 // locate the rule that corresponds to word

 Grammar::const_iterator it = g.find(word);

 if (it == g.end())

 throw logic_error("empty rule");

 // fetch the set of possible rules

 const Rule_collection& c = it->second;

 // from which we select one at random

 const Rule& r = c[nrand(c.size())];

 // recursively expand the selected rule

 for (Rule::const_iterator i = r.begin(); i != r.end(); ++i)

 gen_aux(g, *i, ret);

 }

}

Our first job is trivial: If the word is not bracketed, it represents itself, so we can append it to

ret and we're done. Now comes the interesting part: finding in g the rule that corresponds to

our word. You might think that we could simply refer to g[word], but doing so would give us

the wrong result. Recall from §7.2/125 that when you try to index a map with a nonexistent

key, it automatically creates an element with that key. That will never do in this case, because

we don't want to litter our grammar with spurious rules. Moreover, g is a const map, so even if

we wanted to create new entries, we couldn't do so. Indeed, [] isn't even defined on a const

map.

Evidently, we must use a different facility: The find member of the map class looks for the

element, if any, with the given key, and returns an iterator that refers to that element if it can

find one. If no such element exists in g, the find algorithm returns g.end(). The comparison

between it and g.end(), therefore, serves to ensure that the rule exists. If it doesn't exist, that

means the input was inconsistent—it used a bracketed word without a corresponding rule—so

we throw an exception.

At this point, it is an iterator that refers to an element of g, which is a map. Dereferencing this

iterator yields a pair, the second member of which is the value of the map element. Therefore,

it->second denotes the collection of rules that correspond to this category. For convenience,

we define a reference named c as a synonym for this object.

Our next job is to select a random element from this collection, which we do in the initialization

of r. This code

const Rule& r = c[nrand(c.size())];

is unfamiliar, and is, therefore/worth a close look. First, recall that we defined c to be a

Rule_collection, which is a kind of vector. We call a function named nrand, which we will

define in §7.4.4/135, to select a random element of this vector. When we give nrand an

argument n, it returns a random integer in the range [0, n). Finally, we define r as a synonym

for that element.

Our final task in gen_aux is to examine every element of r. If the element is bracketed, we

have to expand it into a sequence of words; otherwise, we append it to ret. What may seem

like magic on first reading is that this processing is exactly what we are doing in

gen_aux—and therefore, we can call gen_aux to do it!

Such a call is called recursive, and it is one of those techniques that looks like it can't

possibly work—until you've tried it a few times. To convince yourself that this function works,

begin by noting that the function obviously works if word is not bracketed.

Next, assume that word is bracketed, but its rule's right-hand side has no bracketed words of

its own. It should still be easy to see that the program will work in this case, because when it

makes each recursive call, the gen_aux that it calls will immediately see that the word is not

bracketed. Therefore, it will append the word to ret and return.

The next step is to assume that word refers to a slightly more complicated rule—one that

uses bracketed words in its right-hand side, but only words that refer to rules with no

bracketed words of their own. When you encounter a recursive call to gen_aux, do not try to

figure out what it does. Instead, remember that you have already convinced yourself that it

works in this case, because you know that at worst, its argument is a category that does not

lead to any further bracketed words. Eventually, you will see that the function works in all

cases, because each recursive call simplifies the argument.

We do not know any sure way to explain recursion. Our experience is that people stare at

recursive programs for a long time without understanding how they work. Then, one day, they

suddenly get it—and they don't understand why they ever thought it was difficult. Evidently,

the key to understanding recursion is to begin by understanding recursion. The rest is easy.

Having written gen_sentence, read_grammar, and the associated auxiliary functions, we'll

want to use them:

int main() {

 // generate the sentence

 vector<string> sentence = gen_sentence(read_grammar(cin));

 // write the first word, if any

 vector<string>::const_iterator it = sentence.begin();

 if (!sentence.empty()) {

 cout << *it;

 ++it;

 }

 // write the rest of the words, each preceded by a space

 while (it != sentence.end()) {

 cout << " " << *it;

 ++it;

 }

 cout << endl;

 return 0;

}

We read the grammar, generate a sentence from it, and then write the sentence a word at a

time. The only even minor complexity is that we put a space in front of the second and

subsequent words of the sentence.

7.4.4 Selecting a random element

It is now time to write nrand. We begin by noting that the standard library includes a function

named rand (defined in <cstdlib>). That function takes no arguments, and returns a random

integer in the range [0, RAND_MAX], where RAND_MAX is a large integer that is also

defined in <cstdlib>. Our job is to reduce the range [0, RAND_MAX], which includes both 0

and RAND_MAX, to [0, n), which includes 0 but not n, with the understanding that n <=

RAND_MAX.

You might think that it would suffice to compute rand() % n, which is the remainder when

dividing the random integer by n. In practice, this technique fails for two reasons.

The most important reason is pragmatic: rand() really returns only pseudo-random numbers.

Many C++ implementations' pseudo-random-number generators give remainders that aren't

very random when the quotients are small integers. For example, it is not uncommon for

successive results of rand() to be alternately even and odd. In that case, if n is 2, successive

results of rand() % n will alternate between 0 and 1.

There is another, more subtle reason to avoid using rand() % n: If the value of n is large, and

RAND_MAX is not evenly divisible by n, some remainders will appear more often than

others. For example, suppose that RAND_MAX is 32767 (the smallest permissible value of

RAND_MAX for any implementation) and n is 20000. In that case, there would be two

distinct values of rand() that would cause rand() % n to be 10000 (namely, 10000 and

30000), but only one value of rand() that would cause rand() % n to be 15000 (namely,

15000). Therefore, the naive implementation of nrand would yield 10000 as a value of

nrand(20000) twice as often as it would yield 15000.

To avoid these pitfalls, we'll use a different strategy, by dividing the range of available random

numbers into buckets of exactly equal size. Then we can compute a random number and

return the number of the corresponding bucket. Because the buckets are of equal size, some

random numbers may not fall into any bucket at all. In that case, we keep asking for random

numbers until we get one that fits.

The function is easier to write than to describe:

// return a random integer in the range [0, n)

int nrand(int n)

{

 if (n <= 0 || n > RAND_MAX)

 throw domain_error("Argument to nrand is out of range");

 const int bucket_size = RAND_MAX / n;

 int r;

 do r = rand() / bucket_size;

 while (r >= n);

 return r;

}

The definition of bucket_size relies on the fact that integer division truncates its result. This

property implies that RAND_MAX / n is the largest integer that is less than or equal to the

exact quotient. As a consequence, bucket_size is the largest integer with the property that n *

bucket_size <= RAND_MAX.

The next statement is a do while statement. A do while is like a while statement, except that

it always executes the body at least once, and tests the condition at the end. If that condition

yields true, then the loop repeats, executing the push_back until the while fails. In this case,

the body of the loop sets r to a bucket number. Bucket 0 will correspond to values of rand() in

the range [0, bucket_size), bucket 1 will correspond to values in the range [bucket_size,

bucket_size * 2), and so on. If the value of rand() is so large that r >= n, the program will

continue trying random numbers until it finds one that it likes, at which point it returns the

corresponding value of r.

For example, let's assume that RAND_MAX is 32767 and n is 20000. Then bucket_size will

be 1, and nrand will work by discarding random numbers until it finds one less than 20000. As

another example, assume that n is 3. Then bucket_size will be 10922. In this case, values of

rand() in the range [0, 10922) will yield 0, values in the range [10922, 21844) will yield 1,

values in the range [21844, 32766) will yield 2, and values of 32766 or 32767 will be

discarded.

7.5 A note on performance

If you have used associative arrays in other languages, those arrays were probably

implemented in terms of a data structure called a hash table. Hash tables can be very fast,

but they have compensating disadvantages:

For each key type, someone must supply a hash function, which computes an

appropriate integer value from the value of the key.

A hash table's performance is exquisitely sensitive to the details of the hash function.

There is usually no easy way to retrieve the elements of a hash table in a useful

order. C++ associative containers are hard to implement in terms of hash tables:

The key type needs only the < operator or equivalent comparison function.

The time to access an associative-container element with a given key is logarithmic in

the total number of elements in that container, regardless of the keys' values.

Associative-container elements are always kept sorted by key.

In other words, although C++ associative containers will typically be slightly slower than the

best hash-table data structures, they perform much better than naive data structures, their

performance does not require their users to design good hash functions, and they are more

convenient than hash tables because of their automatic ordering. If you're generally familiar

with associative data structures, you might want to know that C++ libraries typically use a

balanced self-adjusting tree structure to implement associative containers.

If you really want hash tables, they are available as parts of many C++ implementations.

However, because they are not part of standard C++, they are beyond the scope of this book.

Although no standard can be ideal for every purpose, the standard associative containers are

more than adequate for most applications.

7.6 Details

The do while statement is similar to the while statement (§2.3.1/19), except that the test is at

the end. The general form of the statement is

do statement

while (condition);

The statement is executed first, after which the condition and statement are executed

alternately until the condition is false.

Value-initialization: Accessing a map element that doesn't yet exist creates an element with

a value of V(), where V is the type of the values stored in the map. Such an expression is said

to be value-initialized. §9.5/164 explains the details of value-initialization; the most important

aspect is that built-in types are initialized to 0.

rand() is a function that yields a random integer in the range [0, RAND_MAX]. Both rand and

RAND_MAX are defined in <cstdlib>.

pair<K, V> is a simple type whose objects hold pairs of values. Access to these data values is

through their names, first and second respectively.

map<K, V> is an associative array with key type K and value type V. The elements of a map

are key-value pairs, which are maintained in key order to allow efficient access of elements by

key. The iterators on maps are bidirectional (§8.2.5/148). Dereferencing a map iterator yields

a value of type pair<const K, V>. The map operations include:

map<K, V> m;

Creates a new empty map, with keys of type const K and values of type V.

map<K, V> m(cmp);

Creates a new empty map with keys of type const K and values of type V, that uses the

predicate cmp to determine the order of the elements.

m[k]

Indexes the map using a key, k, of type K, and returns an lvalue of type V. If there is no

entry for the given key, a new value-initialized element is created and inserted into the map

with this key. Because using [] to access a map might create a new element, [] is not

allowed on a const map.

m.begin()

m.end()

Return iterators that can be used to access the elements of a map. Note that dereferencing

one of these iterators yields a key-value pair, not just a value.

m.find(k)

Returns an iterator referring to the element with key k, or m.end() if no such element exists.

For a map<K, V> and an associated iterator p, the following apply:

p->first Yields an lvalue of type const K that is the key for the element p denotes.

p->second Yields an lvalue of type V that is the value part of the element that p denotes.

Exercises

7-0. Compile, execute, and test the programs in this chapter.

7-1. Extend the program from §7.2/124 to produce its output sorted by occurrence count. That

is, the output should group all the words that occur once, followed by those that occur twice,

and so on.

7-2. Extend the program in §4.2.3/64 to assign letter grades by ranges:

A 90-100

B 80-89.99...

C 70-79.99...

D 60-69.99...

F < 60

The output should list how many students fall into each category.

7-3. The cross-reference program from §7.3/126 could be improved: As it stands, if a word

occurs more than once on the same input line, the program will report that line multiple times.

Change the code so that it detects multiple occurrences of the same line number and inserts

the line number only once.

7-4. The output produced by the cross-reference program will be ungainly if the input file is

large. Rewrite the program to break up the output if the lines get too long.

7-5. Reimplement the grammar program using a list as the data structure in which we build

the sentence.

7-6. Reimplement the gen_sentence program using two vectors: One will hold the fully

unwound, generated sentence, and the other will hold the rules and will be used as a stack.

Do not use any recursive calls.

7-7. Change the driver for the cross-reference program so that it writes line if there is only one

line and lines otherwise.

7-8. Change the cross-reference program to find all the URLs in a file, and write all the lines

on which each distinct URL occurs.

7-9. (difficult) The implementation of nrand in §7.4.4/135 will not work for arguments greater

than RAND_MAX. Usually, this restriction is no problem, because RAND_MAX is often the

largest possible integer anyway. Nevertheless, there are implementations under which

RAND_MAX is much smaller than the largest possible integer. For example, it is not

uncommon for RAND_MAX to be 32767 (215 -1) and the largest possible integer to be

2147483647 (231 -1). Reimplement nrand so that it works well for all values of n.

8

Writing generic functions

The first part of this book concentrated on writing programs that use the fundamentals of the

C++ language, and the abstractions that the standard library provides, to solve concrete

problems. Starting with this chapter, we'll turn our attention to learning how to write our own

abstractions.

These abstractions take several forms. This chapter discusses generic functions, which are

functions with parameter types that we do not know until we call the functions. Chapters 9

through 12 show how to implement abstract data types. Finally, starting in Chapter 13, we will

learn about object-oriented programming (OOP).

8.1 What is a generic function?

Whenever we have written a function so far, we've known the types of the function's

parameters and return value. This knowledge may seem at first like an integral part of any

function's description. Nonetheless, a closer look will reveal that we have already used—but

not written—functions with argument and return types that we do not know until we use the

functions.

For example, in §6.1.3/107, we used a library function named find, which takes two iterators

and a value as arguments. We can use the same find function to find values of any

appropriate type in any kind of container. This usage implies that we do not know what find's

argument or result types will be until we use it. Such a function is called a generic function,

and the ability to use and create generic functions is a key feature of the C++ language.

The language support for generic functions is not hard to understand. What is difficult is

understanding exactly what we mean when we say that find can accept arguments of "any

appropriate type." For example, how can we describe how find behaves in a way that will

enable someone who wishes to use it to know whether it will work with particular arguments?

The answer to this question lies partly within the C++ language and partly outside it.

The part that is inside the language is the idea that the ways in which a function uses a

parameter of unknown type constrain that parameter's type. For example, if a function has

parameters x and y, and computes x + y, then the mere existence of that computation

implicitly requires that x and y have types for which x + y is defined. Whenever you call such a

function, the implementation checks that your arguments' types meet the constraints implied

by the ways in which the function uses its parameters.

The part of the answer that lies outside the C++ language is the way in which the standard

library organizes the constraints on its functions' parameters. We have already shown you one

example of this organization—namely, the notion of an iterator. Some types are iterators;

others aren't. The find function takes three arguments, of which the first two are required to

be iterators.

When we say that a particular type is an iterator, we are really saying something about the

operations that the type supports: A type is an iterator if and only if it supports a particular

collection of operations in a particular way. If we were to set out to write the find function

ourselves, we would do so in a way that relies only on the operations that every iterator must

support. If we were to write our own container—as we shall do in Chapter 11—then we would

have to supply iterators that support all the appropriate operations.

The notion of an iterator is not part of the C++ language proper. However, it is a fundamental

part of the standard library's organization, and it is that part that makes generic functions as

useful as they are. This chapter shows some examples of how the library might implement

generic functions. Along the way, it explains just what an iterator is— or, more precisely, what

iterators are, because they come in five different varieties.

This chapter is more abstract than the ones we've seen so far, because it is in the very nature

of generic functions to be abstract. If we wrote functions that solved specific problems, those

functions wouldn't be generic. Nevertheless, you will find that most of the functions that we

describe are familiar, because we have used them in earlier examples. Moreover, it shouldn't

be hard to imagine how you might use even the unfamiliar ones.

8.1.1 Medians of unknown type

The language feature that implements generic functions is called template functions.

Templates let us write a single definition for a family of functions—or types—that behave

similarly, except for differences that we can attribute to the types of their template

parameters. We'll explore template functions in this chapter, and template classes in Chapter

11.

The key idea behind templates is that objects of different types may nevertheless share

common behavior. Template parameters let us write programs in terms of that common

behavior, even though we do not know the specific types that correspond to the template

parameters when we define the template. We do know the types when we use a template,

and that knowledge is available when we compile and link our programs. For generic

parameters, the implementation doesn't need to worry about what to do about objects with

types that might vary during execution—only during compilation.

Although templates are a cornerstone of the standard library, we can use them for our own

programs as well. For example, we wrote a function in §4.1.1/53 to calculate the median of a

vector<double>. That function relied on the ability to sort a vector, and then to fetch a

specific element given its index, so we cannot easily make that function work on arbitrary

sequences of values. Even so, there is no reason to restrict the function

to vector<double>; we can take the median of vectors of other types as well. Template

functions allow us to do so:

template<class T>

T median(vector<T> v)

{

 typedef typename vector<T>::size_type vec_sz;

 vec_sz size = v.size();

 if (size == 0)

 throw domain_error("median of an empty vector");

 sort(v.begin(), v.end());

 vec_sz mid = size/2;

 return size % 2 == 0 ? (v[mid] + v[mid-1]) / 2 : v[mid];

}

The first novelties here are the template header,

template<class T>

and the use of T in the parameter list and return type. The template header tells the

implementation that we are defining a template function, and that the function will take a type

parameter. Type parameters operate much like function parameters: They define names that

can be used within the scope of the function. However, type parameters refer to types, not to

variables. Thus, wherever T appears in the function, the implementation will assume that T

names a type. In the median function, we use the type parameter explicitly to say what type of

objects the vector named v holds, and to specify the return type of the function.

When we call this median function, the implementation will bind T to a type that it determines

at that point, during compilation. For example, we might take the median of a vector<int>

object named vi by calling median(vi). From this call, the implementation can infer that T is

int. Wherever we use T in this function, the implementation generates code as if we had

written int. In effect, the implementation instantiates our code as if we had written a specific

version of median that took a vector<int> and returned an int. We'll have more to say about

instantiation shortly.

The next novelty is the use of typename in the definition of vec_sz. It is there to tell the

implementation that vector<T>::size_type is the name of a type, even though the

implementation doesn't yet know what type T represents. Whenever you have a type, such as

vector<T>, that depends on a template parameter, and you want to use a member of that

type, such as size_type, that is itself a type, you must precede the entire name by typename

to let the implementation know to treat the name as a type. Although the standard library

ensures that vector<T>::size_type is the name of a type for any T, the implementation,

having no special knowledge of the standard-library types, has no way of knowing this fact.

As you read a template, you will usually see that the type parameters pervade its definition,

even if many of the type dependencies are implicit. In our median function, we use the type

parameters explicitly only in the function return type and parameter list, and in the definition of

vec_sz. However, because v has type vector<T>, any operation involving v implicitly involves

this type. For example, in the expression

(v[mid] + v[mid-l]) / 2

we have to know the type of v's elements in order to know the types of v[mid] and v[mid-1].

These types, in turn, determine the type of the + and / operators. If we call median on a

vector<int>, then we can see that + and / take int operands and return int results. Calling

median for a vector<double> does the arithmetic on double values. We can't call median for

a vector<string>, because the median function uses division, and the string type does not

have a division operator. This behavior is what we want. After all, what would it mean to find

the median of a vector<string>?

8.1.2 Template instantiation

When we call median on behalf of a vector<int>, the implementation will effectively create

and compile an instance of the function that replaces every use of T by int. If we also call

median for a vector<double>, then the implementation will again infer the types from the call.

In this case, T will be bound to double, and the implementation will generate another version

of median using double in place of T.

The C++ standard says nothing about how implementations should manage template i

nstantiation, so every implementation handles instantiation in its own particular way. While we

cannot say exactly how your compiler will handle instantiation, there are two important points

to keep in mind: The first is that for C++ implementations that follow the traditional

edit-compile-link model, instantiation often happens not at compile time, but at link time. It is

not until the templates are instantiated that the implementation can verify that the template

code can be used with the types that were specified. Hence, it is possible to get what seem

like compile-time errors at link time.

The second point matters if you write your own templates: Most current implementations

require that in order to instantiate a template, the definition of the template, not just the

declaration, has to be accessible to the implementation. Generally, this requirement implies

access to the source files that define the template, as well as the header file. How the

implementation locates the source file differs from one implementation to another. Many

implementations expect the header file for the template to include the source file, either

directly or via a #include. The most certain way to know what your implementation expects is

to check its documentation.

8.1.3 Generic functions and types

We said in §8.1/139 that the difficult part of designing and using templates is understanding

precisely the interaction between a template and the "appropriate types" that can be used with

the template. We saw one obvious type dependency in our definition of the template version

of median: The types stored in the vectors that are passed to the median function must

support addition and division, and these operations had better map to their normal arithmetic

meanings. Fortunately, most types that define division are arithmetic types, so such

dependencies are unlikely to create problems in practice.

More subtle type issues arise in the interactions between templates and type conversions. For

example, when we called find to check whether students had done all their homework, we

wrote

find(s.homework.begin(), s.homework.end(), 0);

In this case, homework is a vector<double>, but we told find to look for an int. This particular

type mismatch is of no consequence: We can compare an int value with a double value with

no loss of meaning. However, when we called accumulate

accumulate(v.begin(), v.end(), 0.0)

we noted that the correctness of our program depended on our using the double form of zero,

rather than the int. The reason is that the accumulate function uses the type of its third

argument as the type of its accumulator. If that type is int—even if we're adding a sequence of

doubles—the addition will be truncated to just the integer part. In this case, the

implementation would let us pass an int, but the sum that we obtained would lack precision.

Finally, when we called max

string::size_type maxlen = 0;

maxlen = max(maxlen, name.size());

we noted that it was essential that the type of maxlen match exactly the type returned by

name.size(). If the types don't match, the call will not compile. Now that we know that

template parameter types are inferred from the argument types, we can understand why this

behavior exists. Consider a plausible implementation of the max function:

template<class T>

T max(const T& left, const T& right)

{

 return left > right ? left : right;

}

If we pass an int and a double to this function, the implementation has no way to infer which

argument to convert to the other argument's type. Should it resolve the call as comparing the

values as ints, and so return an int, or should it treat both arguments as double and return a

double? There's no way for the implementation to make this determination, so the call fails at

compile time.

8.2 Data-structure independence

The median function that we just implemented used templates to generalize across types that

a vector might contain. We can call this function to find the median of a vector of values of

any kind of arithmetic type.

More generally, we would like to be able to write a simple function that deals with values

stored in any kind of data structure, such as a list, a vector, or a string. For that matter, we

would like to be able to act on part of a container, rather than having to use the entire

container.

For example, the standard library uses iterators to allow us to call find on any contiguous part

of any container. If c is a container, and val is a value of the type stored in the container, we

use find by writing expressions such as

find(c.begin(), c.end(), val)

Why did we have to mention c twice? Why doesn't the library let us say

c.find(val)

by analogy with c.size(), or even

find(c, val)

passing the container directly to find as an argument? Both questions turn out to have the

same answer: By using iterators, and thereby requiring us to mention c twice, the library

makes it possible to write a single find function that can find a value in any contiguous part of

any container. Neither of these other approaches allows us to do so.

Let's look first at c.find(val). If the library let us use c.find(val), we would be calling find as a

member of whatever type c has—which means that whoever defined the type of c would have

to define find as a member. Also, if the library used the c.find(val) style for the algorithms,

then we would be unable to use these functions for built-in arrays, about which we shall learn

in Chapter 10.

Why does the library require us to give c.begin() and c.end() as arguments to find instead of

letting us pass c directly? The reason to pass two values is that doing so delimits a range,

which makes it possible to look in part of a container instead of insisting on looking through

the whole thing. For example, think about how you would write the split function in §6.1.1/103

if find_if were restricted to searching an entire container.

There is a more subtle reason for generic functions to take iterator arguments instead of

container arguments directly: It is possible for iterators to access elements that aren't in

containers at all in the ordinary sense. For example, in §6.1.2/105, we used the rbegin

function, which yields an iterator that grants access to its container's elements in reverse

order. Passing such an iterator as an argument to find or find_if lets us search the container's

elements in reverse order, which would be impossible if these functions insisted on taking a

container as an argument directly.

Of course, it would be possible to overload the library functions, so that one could call them

with either a container or a pair of iterators as an argument. However, it is far from clear that

the extra convenience would outweigh the extra complexity in the library.

8.2.1 Algorithms and iterators

The easiest way to understand how templates let us write data-structure-independent

programs is to look at implementations of some of the more popular standard-library

functions. These functions all include iterators among their arguments, which identify the

container elements on which the functions will act. All standard-library containers, and some

other types, such as string, supply iterators that allow these functions to act on the containers'

elements.

Some containers support operations that others do not. This support, or lack thereof,

translates into operations that some iterators support and others do not. For example, it is

possible to access an element with a given index directly in a vector, but not in a list.

Accordingly, if we have an iterator that refers to an element of a vector, the design of that

iterator makes it possible to obtain an iterator that refers to another element of that same

vector by adding the difference between the elements' indices to the iterator. Iterators that

refer to list elements offer no analogous facility.

Because different kinds of iterators offer different kinds of operations, it is important to

understand the requirements that various algorithms place on the iterators that they use, and

the operations that various kinds of iterators support. Whenever two iterators support the

same operation, they give it the same name. For example, all iterators use ++ to cause an

iterator to refer to the next element of its container.

Not all algorithms need all the iterator operations. Some algorithms, such as find, use very

few iterator operations. We can find values using any of the container iterators that we've

seen. Other algorithms, such as sort, use the most powerful operations, including arithmetic,

on iterators. Of the types we've seen in the library, only vectors and strings are compatible

with sort. (Sorting a string arranges its individual characters in nondecreasing order.)

The library defines five iterator categories, each one of which corresponds to a specific

collection of iterator operations. These iterator categories classify the kind of iterator that each

of the library containers provides. Each standard-library algorithm says what category it

expects for each iterator argument. Thus, the iterator categories give us a way to understand

which containers can use which algorithms.

Each iterator category corresponds to a strategy for accessing container elements. Because

iterator categories correspond to access strategies, they also correspond to particular kinds of

algorithms. For example, some algorithms make only a single pass over their input, so they

don't need iterators that can make multiple passes. Others require the ability to access

arbitrary elements efficiently given only their indices, and, therefore, require the ability to add

indices and integers.

We will now describe each access strategy, show an algorithm that uses it, and describe the

corresponding iterator category.

8.2.2 Sequential read-only access

One straightforward way to access a sequence is to read its elements sequentially. Among

the library functions that does so is find, which we can implement as

template <class In, class X> In find(In begin. In end, const X& x)

{

 while (begin != end && *begin != x)

 ++begin;

 return begin;

}

If we call find(begin, end, x), the result is either the first iterator iter in the range [begin, end)

such that *iter == x, or end if no such iterator exists.

We know that this function accesses the elements in the range [begin, end) sequentially,

because the only operation it ever uses to change the value of begin is ++. In addition to

using ++ to change the value of begin, it uses != to compare begin and end, and * to access

the container element to which begin refers. These operations are sufficient to read

sequentially the elements to which a range of iterator values refers.

Although the operations are sufficient, they are not the only operations that we might want to

use. For example, we might have implemented find this way:

template <class In, class X> In find(In begin, In end, const X& x)

{

 if (begin == end || *begin == x)

 return begin;

 begin++;

 return find(begin, end, x);

}

Although most C++ programmers would find this recursive programming style unusual,

programmers accustomed to languages such as Lisp or ML will feel right at home. This

version of find uses begin++ instead of ++begin, and == instead of !=. From these two

examples, we can conclude that an iterator that offers sequential read-only access to

elements of a sequence should support ++ (both prefix and postfix), ==, !=, and unary *.

There is one other operator that such an iterator ought to support, and that is the equivalence

between iter->member and (*iter).member that we used, for example, in §7.2/124. There we

used it->first as an abbreviation for (*it).first, and we would certainly like to be able to do so in

general.

If a type provides all of these operations, we call it an input iterator. Every container iterator

that we've seen supports all these operations, so they are all input iterators. Of course, they

support other operations as well, but that additional support does not affect the fact that they

are input iterators.

When we say that find requires input iterators as its first and second arguments, we are

saying that we can give find arguments of any type that meets the input-iterator requirements,

including iterators that support additional operations.

8.2.3 Sequential write-only access

Input iterators can be used only for reading elements of a sequence. Obviously, there are

contexts in which we would like to be able to use iterators to write elements of a sequence.

For example, consider the copy function

template<class In, class Out>

Out copy(In begin, In end, Out dest)

{

 while (begin != end)

 *dest++ = *begin++;

 return dest;

}

This function takes three iterators; the first two denote the sequence from which to copy, and

the third denotes the beginning of the destination sequence. We saw this same while loop in

§6.1/102: The function operates by advancing begin through the container until it reaches

end, copying each element into dest as it goes.

As the name In suggests, begin and end are input iterators. We use them only for reading

elements, just as we did in find. What about Out, the type of the parameter dest? Looking at

the operations on dest, we see that in this function, we need only be able to evaluate *dest =

value and dest++. As with find, logical completeness argues that we should also be able to

evaluate ++dest.

There is one other requirement that is less evident. Suppose it is an iterator that we wish to

use for output only, and we execute

*it = x;

++it;

++it;

*it = y;

By incrementing it twice between assignments to *it, we have left a gap in our output

sequence. Therefore, if we wish to use an iterator exclusively for output, there is an implicit

requirement that we not execute ++it more than once between assignments to *it, or assign a

value to *it more than once without incrementing it.

If a function uses a type in a way that meets these requirements, we call that type an output

iterator. All the standard containers provide iterators that meet these requirements, as does

back_inserter. It is worth noting that the "write-once" property is a requirement on programs

that use iterators, not on iterators themselves. That is, iterators that satisfy only the

output-iterator requirements are required to support only programs that maintain that property.

The iterator generated by back_inserter is an output iterator, so programs that use it must

obey the "write-once" requirement. The container iterators all offer additional operations, so

programs that use them are not restricted in this way.

8.2.4 Sequential read-write access

Suppose we want to be able to read and write the elements of a sequence, but only

sequentially: We intend to advance iterators forward but never backward. An example of a

library function that does so is replace, from the <algorithm> header:

template<class For, class X>

void replace(For beg, For end, const X& x, const X& y)

{

 while (beg != end){

 if (*beg == x)

 *beg = y;

 ++beg;

 }

}

This function examines the elements in the range [beg, end) and replaces every element that

is equal to x by y. It should be clear that the type For needs to support all the operations

supported by an input iterator, as well as all the operations supported by an output iterator.

Moreover, it should not need to meet the single-assignment requirement of output iterators,

because it now makes sense to read the element value after assigning it, and perhaps to

change it. Such a type is a forward iterator, and it is required to support

*it (for both reading and writing)

++it and it++ (but not --it or it—-)

it == j and it != j (where j has the same type as it)

it->member (as a synonym for (*it).member)

All the standard-library containers meet the forward-iterator requirements.

8.2.5 Reversible access

Some functions need to get at a container's elements in reverse order. The most

straightforward example of such a function is reverse, which the standard library defines in

the <algorithm> header

template<class Bi> void reverse(Bi begin, Bi end)

{

 while (begin != end) {

 --end;

 if (begin != end)

 swap(*begin++, *end);

 }

}

In this algorithm, we march end backward from the end of the vector and beg forward from

the beginning, exchanging the elements that they reference as we go.

This function uses the iterators begin and end as if they were forward iterators, except that it

also uses --, which is obviously the key to being able to traverse a sequence backward. If a

type meets all the requirements of a forward iterator, and also supports -- (both prefix and

postfix), we call it a bidirectional iterator.

The standard-library container classes all support bidirectional iterators.

8.2.6 Random access

Some functions need to be able to jump around in a container. One good example of such a

function is the classical binary-search algorithm. The standard library implements this

algorithm in several forms, the most straightforward of which is called—you guessed

it—binary_search. The standard-library implementation actually uses some clever techniques

(well beyond the scope of this book) that allow it to do binary searches on sequences defined

by forward iterators. A simpler version, which requires random-access iterators, looks like

this:

template<class Ran, class X>

bool binary_search(Ran begin, Ran end, const X& x)

{

 while (begin < end) {

 // find the midpoint of the range

 Ran mid = begin + (end - begin) / 2;

 // see which part of the range contains x; keep looking only in that part

 if (x < *mid)

 end = mid;

 else if (*mid < x)

 begin = mid + 1;

 // if we got here, then *mid == x so we're done

 else return true;

 }

 return false;

}

In addition to relying on the other usual iterator properties, this function relies on the ability to

do arithmetic on iterators. For example, it subtracts one iterator from another to obtain an

integer, and adds an iterator and an integer to obtain another iterator. Again, the notion of

logical completeness adds requirements to random-access iterators. If p and q are such

iterators, and n is an integer, then the complete list of additional requirements, beyond those

for bidirectional iterators, is

p + n, p - n, and n + p

p - q

p[n] (equivalent to *(p + n))

p < q, p > q, p <= q, and p >= q

Subtracting two iterators yields the distance between the iterators as an integral type that we

will discuss in §10.1.4/175. We did not include == and != in the requirements because

random-access iterators also support the requirements on bidirectional iterators.

The only algorithm that we have used that requires random-access iterators is the sort

function. The vector and string iterators are random-access iterators. However, the list

iterator is not; it supports only bidirectional iterators. Why?

The essential reason is that lists are optimized for fast insertion and deletion. Hence, there is

no quick way to navigate to an arbitrary element of the list. The only way to navigate through

a list is to look at each element in sequence.

8.2.7 Iterator ranges and off-the-end values

As we've seen, the convention that algorithms take two arguments to specify ranges is nearly

universal in the library. The first argument refers to the first element of the range; the second

argument refers to one past the last element of the range. Why do we specify one past the

end of the range? When is it even valid to do so?

In §2.6/30, we saw one reason to use an upper bound for a range that is one past the last

value in the range—namely, that if we specified the end of a range by a value equal to the last

element, then we would be saying implicitly that the last element was special somehow. If the

end value is treated specially, it is easy to write programs that mistakenly stop one iteration

before the end. As far as iterators are concerned, there are at least three more reasons to

mark the end of a range by an iterator that is one past the last element, instead of one that

refers to the last element directly.

One reason is that if the range had no elements at all, there would be no last element to mark

the end. We would then be in the curious position of having to designate an empty range by

an iterator that refers to where the element before the beginning of the range would be. With

that strategy, we would have to handle empty ranges differently from all others, which would

make our programs harder to understand and less reliable. We saw in §6.1.1/103 that treating

empty ranges the same as any others simplified our program.

The second reason is that marking the end of a range by an iterator that is one past the end

lets us get away with comparing iterators only for equality and inequality, and makes it

unnecessary to define what it means for one iterator to be less than another. The point is that

we can tell immediately if the range is empty by comparing the two iterators; the range is

empty if and only if the iterators are equal. If they are unequal, then we know that the

beginning iterator refers to an element, so we can do something and then increment that

iterator to reduce the size of the range. In other words, marking ranges by the beginning and

one past the end allows us to use loops of the form

// invariant: we must still process the elements in the range [begin, end)

while (begin != end) {

 // do something with the element to which begin refers

 ++begin;

}

and we need only to be able to do (in)equality comparisons on iterators.

The third reason is that defining a range by the beginning and one past the end gives us a

natural way to indicate "out of range." Many standard-library algorithms—and algorithms that

we ourselves write—take advantage of this out-of-range value by returning the second iterator

of a range to indicate failure. For example, our url_beg function in §6.1.3/108 used this

convention to signal its inability to find a URL. If the algorithms did not have this value

available, they would have to invent one, which would complicate both the algorithms and the

programs that use them.

In short, although it may seem odd to indicate the end of a range by an iterator that refers to

one element past the end, doing so makes most programs simpler and more reliable than

they would be otherwise. To this end, every container type is required to support an

off-the-end value for its iterators. Each container's end member returns such a value, and that

value can be the result of other iterator operations as well. For example, if c is a container,

copying c.begin() and incrementing that copy a number of times equal to c.size() will yield an

iterator that is equal to c.end(). The effect of dereferencing an off-the-end iterator is

undefined, as is that of computing an iterator value that is before the beginning of a container,

or more than one past the end.

8.3 Input and output iterators

Why are input and output iterators separate categories from forward iterators if no standard

container requires the distinction? One reason is that not all iterators are associated with

containers. For example, if c is a container that supports push_back, then back_inserter(c) is

an output iterator that meets no other iterator requirements.

As another example, the standard library provides iterators that can be bound to input and

output streams. Not surprisingly, the iterators for istream meet the requirements for input

iterators, and those for ostreams meet the requirements for output iterators. Using the

appropriate stream iterator, we can use the normal iterator operations to manipulate an

istream or an ostream. For example, ++ will advance the iterator to the next value in the

stream. For input streams, * will yield the value at the current position in the input, and for

output streams, * will let us write to the corresponding ostream. The stream iterators are

defined in the <iterator> header.

The input stream iterator is an input-iterator type named istream_iterator:

vector<int> v;

// read ints from the standard input and append them to v

copy(istream_iterator<int>(cin), istream_iterator<int>(),

 back_inserter(v));

As usual, the first two arguments to copy specify a range from which to copy. The first

argument constructs a new istream_iterator, bound to cin, that expects to read values of type

int. Remember that C++ input and output are typed operations: When we read from a stream,

we always say the type of value that we expect to read, although those types are often implicit

in the operations that do the read. For example,

getline(cin, s) // read data into a string

cin >> s.name >> s.midterm >> s.final; // read a string and two doubles

Similarly, when we define a stream iterator, we must have a way to tell it what type it should

read from or write to the stream. Accordingly, the stream iterators are templates.

The second argument to copy creates a default (empty) istream_iterator<int>, which is not

bound to any file. The istream_iterator type has a default value with the property that any

istream_iterator that has reached end-of-file or is in an error state will appear to be equal to

the default value. Therefore, we can use the default value to indicate the "one-past-the-end"

convention for copy.

We can now see that the call to copy will read values from the standard input until we hit

end-of-file or an input that is not valid as an int.

We cannot use an istream_iterator for writing. If we wish to write, we need an

ostream_iterator, which is the iterator type whose objects we use for output:

// write the elements of v each separated from the other by a space

copy(v.begin(), v.end(), ostream_iterator<int>(cout, " "));

Here we copy the entire vector onto the standard output. The third argument constructs a

new iterator bound to cout, which expects to write values of type int.

The second argument used to construct the ostream_iterator<int> object specifies a value to

be written after each element. Typically, this value is a string literal. If we do not supply such a

value, the ostream_iterator will write values without any separation. Therefore, if we omit the

separator, a call to copy will run all the values together into one unreadable mess:

// no separation between elements!

copy(v.begin(), v.end(), ostream_iterator<int>(cout));

8.4 Using iterators for flexibility

We can make a slight improvement in the split function that we presented in §6.1.1/103. As

written, the split function returns a vector<string>, which is limiting: Instead of a vector, our

users might want a list<string> or another kind of container. Nothing about the split algorithm

requires that we produce a vector.

We can be more flexible by rewriting split to take an output iterator instead of returning a

value. In this version of the function, we'll use that iterator to write the words that we find. Our

caller will have bound the iterator to the output location where the values should be placed:

template <class Out> // changed

void split(const string& str, Out os) { // changed

 typedef string::const_iterator iter;

 iter i = str.begin();

 while (i != str.end()) {

 // ignore leading blanks

 i = find_if(i, str.end(), not_space);

 // find end of next word

 iter j = find_if(i, str.end(), space);

 // copy the characters in [i, j)

 if (i != str.end())

 *os++ = string(i, j); // changed

 i = j;

 }

}

Like the write_analysis function that we wrote in §6.2.2/113, our new version of split has

nothing to return, so we say that its return type is void. We have now made split a template

function that takes a single type parameter Out, the name of which suggests an output

iterator. Recall that because forward, bidirectional, and random-access iterators meet all the

output-iterator requirements, we can use our split with any kind of iterator except a pure input

iterator such as istream_iterator.

The parameter os is of type Out. We will use it to write the values of the words as we find

them. We do so near the end of the function

*os++ = string(i, j); // changed

which writes the word that we just found. The subexpression *os denotes the current position

in the container to which os is bound, so we assign the value of string(i, j) to the element at

that position. Having done the assignment, we increment os so that we meet the

output-iterator requirements, and so that the next trip through the loop will assign a value to

the next container element.

Programmers who wish to use this revised split function will have to change their programs,

but now we can write the words into almost any container. For example, if s is the string

whose words we want to append to a list called word_list, then we could call split as follows:

split(s, back_inserter(word_list));

Similarly, we can write a trivial program to test our split program:

int main()

{

 string s;

 while (getline(cin, s))

 split(s, ostream_iterator<string>(cout, "\n"));

 return 0;

}

Like the driver function that we wrote in §5.7/90, this function calls split to separate the input

line into separate words, and writes those words onto the standard output. We write to cout

by passing to split an ostream_iterator<string> that we bind to cout. When split assigns to

*os, it will be writing to cout.

8.5 Details

Template functions that return simple types have the form

template<class type-parameter [, class type-parameter]... >

ret-type function-name (parameter-list)

Each type-parameter is a name that may be used inside the function definition wherever a

type is required. Each of these names should be used in the function parameter-list to name

the type of one or more parameters.

If the types do not all appear in the argument list, then the caller must qualify the

function-name with the actual types that cannot be inferred. For example,

template<class T> T zero() { return 0; }

defines zero to be a template function with a single type parameter, which is used to name

the return type. In calling this function, we must supply the return type explicitly:

double x = zero<double>();

The typename keyword must be used to qualify declarations that use types that are defined

by the template type parameters. For example,

typename T::size_type name;

declares name to have type size_type, which must be defined as a type inside T.

The implementation automatically instantiates a separate instance of the template function for

each set of types used in a call to the function.

Iterators: A key contribution of the C++ standard library is the idea that algorithms can

achieve data-structure independence by using iterators as the glue between algorithms and

containers. Furthermore, the realization that algorithms can be factored based on the

operations that are required for the iterators that they use means that it is easy to match a

container with the algorithms that can be used on it.

There are five iterator categories. In general, the later categories subsume the operations in

the earlier ones:

Input iterator: Sequential access in one direction, input only

Output iterator: Sequential access in one direction, output only

Forward iterator: Sequential access in one direction, input and output

Bidirectional iterator: Sequential access in both directions, input and output

Random-access iterator: Efficient access to any element, input and output

Exercises

8-0. Compile, execute, and test the programs in this chapter.

8-1. Note that the various analysis functions we wrote in §6.2/110 share the same behavior;

they differ only in terms of the functions they call to calculate the final grade. Write a template

function, parameterized by the type of the grading function, and use that function to evaluate

the grading schemes.

8-2. Implement the following library algorithms, which we used in Chapter 6 and described in

§6.5/121. Specify what kinds of iterators they require. Try to minimize the number of distinct

iterator operations that each function requires. After you have finished your implementation,

see §B.3/321 to see how well you did.

equal(b, e, d) search(b, e, b2, e2)

find(b, e, t) find_if(b, e, p)

copy(b, e, d) remove_copy(b, e, d, t)

remove_copy_if(b, e, d, p) remove(b, e, t)

transform(b, e, d, f) partition(b, e, p)

accumulate(b, e, t)

8-3. As we learned in §4.1.4/58, it can be expensive to return (or pass) a container by value.

Yet the median function that we wrote in §8.1.1/140 passes the vector by value. Could we

rewrite the median function to operate on iterators instead of passing the vector? If we did so,

what would you expect the performance impact to be?

8-4. Implement the swap function that we used in §8.2.5/148. Why did we call swap rather

than exchange the values of *beg and *end directly? Hint: Try it and see.

8-5. Reimplement the gen_sentence and xref functions from Chapter 7 to use output iterators

rather than writing their output directly to a vector<string>. Test these new versions by writing

programs that attach the output iterator directly to the standard output, and by storing the

results in a list<string> and a vector<string>.

8-6. Suppose that m has type map<int, string>, and that we encounter a call to

copy(m.begin(), m.end(), back_inserter(x)). What can we say about the type of x? What if

the call were copy(x.begin(), x.end(), back_inserter(m)) instead?

8-7. Why doesn't the max function use two template parameters, one for each argument

type?

9

Defining new types

C++ has two kinds of types: built-in types and class types. Built-in types, so called because

they are defined as part of the core language, include char, int, and double. The types that

we've used from the library, such as string, vector, and istream, are all class types. Except

for some of the low-level, system-specific routines in the input-output library, the library

classes rely only on the same language facilities that any programmer can use to define

application-specific types.

Much of the design of C++ rests on the idea of letting programmers create types that are as

easy to use as are the built-in types. As we shall see, the ability to create types with

straightforward, intuitive interfaces requires substantial language support, as well as taste and

judgment in class design. We'll start by using the grading problem from Chapter 4 as a way of

exploring the most fundamental class-definition facilities. Starting in Chapter 11, we will build

on these basic concepts by looking at how we can build types that are as complete as the

ones that the library offers.

9.1 Student_info revisited

In §4.2.1/61, we wrote a simple data structure called Student_info and a handful of functions,

which made it easy to write programs to deal with students' course grades. However, the data

structure and functions that we wrote were not well suited for other programmers to use.

Whether we were aware of it or not, programmers who wanted to use our functions had to

follow certain conventions. For example, we assumed that anyone who used a newly created

Student_info object would first read data into it. Failure to do so would result in an object that

had an empty homework vector and undefined values (§3.1/38) for midterm and final. Any

use of these values would yield unpredictable behavior— either incorrect results or an outright

crash. Moreover, if a user wanted to check whether a Student_info contained valid data, the

only way to do so would be to look at the actual data members, which would require detailed

knowledge of how we had implemented the Student_info class.

A related problem is that someone who used our programs would probably assume that once

a record for a student has been read from a file, that student's data will not change in the

future. Unfortunately, our code offers no basis for that assumption.

A third problem is that the "interface" to our original Student_info structure is scattered. By

convention, we might put the functions, such as read, that change the state of a Student_info

object into a single header file. Doing so would help subsequent users of our code—if we

decide to do so—but there is no requirement for such grouping.

As we'll see in this chapter, we can extend the Student_info structure to solve each of these

problems.

9.2 Class types

At its most fundamental level, a class type is a mechanism for combining related data values

into a data structure, so that we can treat that data structure as a single entity. For example,

the Student_info structure that we built in §4.2.1/61,

struct Student_info {

std::string name;

double midterm, final;

std::vector<double> homework;

}

let us define and manipulate objects of type Student_info. Each object of this type has four

data elements: a std::string named name, a std::vector<double> named homework, and two

doubles named midterm and final.

As it stands, programmers who use the Student_info type may—and must— manipulate

these data elements directly. They may manipulate the data directly because the definition of

Student_info has not restricted access to the data elements. They must do so because no

other operations are available on Student_info.

Rather than letting users access the data directly, we would like to hide the implementation

details of how Student_infos are stored. In particular, we want to require the type's users to

access objects only through functions. To do so, we first need to provide the users with

convenient operations for manipulating Student_info objects. These operations will form the

interface to our class.

Before looking at these functions, it is worth reviewing why we are using the fully qualified

names for std::string and std::vector, rather than assuming that a using-declaration that

allowed us to access the names directly had been made. Code that wants to use our

Student_info structure must have access to the class definition, so we will put the definition in

a header file. As we pointed out in §4.3/67, code that is intended for use by others should

contain the minimal number of declarations necessary. Obviously, we must define the name

Student_info, because that is the name we want users to use. The fact that string and vector

are used by Student_info is an implementation artifact. There is no reason to force

using-declarations on users of Student_info just because we use these types in the

implementation.

In our programming examples, and as a matter of good practice, we use the qualified names

in code that goes into header files, but we will continue to assume that the corresponding

source files contain appropriate using-declarations. Therefore, when we write program text

that we intend to appear outside a header file, we will generally not use fully qualified names.

9.2.1 Member functions

In order to control access to Student_info objects, we need to define an interface that

programmers can use. Let's start by defining operations to read a record and to calculate the

overall grade:

struct Student_info {

 std::string name;

 double midterm, final;

 std::vector<double> homework;

 std::istream& read(std::istream&); // added

 double grade() const; // added

};

We still say that each Student_info object has four data elements, but we've also given

Student_info two member functions. These member functions will let us read a record from

an input stream and calculate the final grade for any Student_info object. The const on the

declaration of grade is a promise that calling the grade function will not change any of the

data members of the Student_info object.

We first discussed member functions in §1.2/14 when we talked about using the size member

of class string. Essentially, a member function is a function that is a member of a class object.

In order to call a member function, our users must nominate the object of which the function to

be called is a member. So, analogous to calling greeting.size() for a string object named

greeting, our users will call s.read(cin) or s.grade() on behalf of a Student_info object

named s. The call s.read(cin) will read values from the standard input and set the state of s

appropriately. The call s.grade() will calculate and return the final grade for s.

The definition of the first of our member functions looks a lot like the original version of read in

§4.2.2/62:

istream& Student_info::read(istream& in)

{

 in >> name >> midterm >> final;

 read_hw(in, homework);

 return in;

}

As we did originally, we would put these functions in a common source file named

Student_info.cpp, Student_info.C, or Student_info.c. The important point is that the

declarations for these functions are now part of our Student_info structure, so they must be

available to all users of the Student_info class.

There are three important comparison points between this code and the original:

The name of the function is Student_info::read instead of plain read.1.

Because this function is a member of a Student_info object, we do not need to pass a

Student_info object as an argument, or to define a Student_info object at all.

2.

We access the data elements of our object directly. For example, in §4.2.2/62, we

referred to s.midterm; here we refer to just midterm.

3.

We will explain each of these differences in turn.

The :: in the function name is the same scope operator that we have already used, as far back

as §0.7/5, to access names that the standard library defines. For example, we wrote

string::size_type to get the name size_type that is a member of class string. Similarly, by

writing Student_info::read, we are defining the function, named read, that is a member of the

Student_info type.

This member function requires only an istream& parameter, because the Student_info&

parameter will be implicit in any call. Remember that when we call a function that is a member

of a vector or string object, we must say which vector or string we want. For example, if s is a

string, then we write s.size() to call the size member of object s. There is no way to call the

size function from class string without nominating a string object. In the same way, when we

call the read function, we will have to say explicitly into which Student_info object we're

reading. That object is implicitly used in the read function.

The references to the members inside read are unqualified because they are references to

members of the object on which we are operating. In other words, if we call s.read(cin) for a

Student_info object named s, then we are operating on object s. When read uses midterm,

final, and homework, it will be using s.midterm, s final, and s.homework respectively.

Now let's look at the grade member:

double Student_info::grade() const

{

 return ::grade(midterm, final, homework);

}

This version resembles the version in §4.2.2/63, and differs from it in ways analogous to the

differences in read: We define grade as a member of Student_info, the function takes an

implicit rather than an explicit reference to a Student_info object, and it accesses the

members of that object without any qualification.

This code contains two more important differences. First, note the call to ::grade. Putting :: in

front of a name insists on using a version of that name that is not a member of anything. In

this case, we need the :: so that the call will reach the version of grade that takes two

doubles and a vector<double>, which we defined in §4.1.2/54. Without it, the compiler would

think that we were referring to Student_info::grade, and would complain because we tried to

call it with too many arguments.

The other important difference is the use of const immediately after grade's parameter list.

We can understand this usage by comparing our new function declaration with the original:

double Student_info::grade() const { ... } // member-function version

double grade(const Student_info&) { ... } // original from §4.2.2/63

In the original function, we passed the Student_info as a reference to const. By doing so, we

ensured that we could ask for the grade of a const Student_info object, and that the compiler

would complain if the grade function tried to change its parameter.

When we call a member function, the object of which it is a member is not an argument.

Therefore, there is no entry in the parameter list in which we might be able to say that the

object is const. Instead, we qualify the function itself, thereby making it a const member

function. Member functions that are const may not change the internal state of the object on

which they are executing: We are guaranteed that if we call s.grade() on behalf of a

Student_info object named s, doing so will not change the data members of s.

Because the function guarantees that it will not change the values in the object, we can call it

for const objects. By the same token, we cannot call nonconst functions on const objects, so,

for example, we cannot call the read member on behalf of a const Student_info object. After

all, a function such as read says that it can change the object's state. Calling such a function

on a const object could violate our const promise.

It is important to note that even if a program never creates any const objects directly, it may

create lots of references to const objects through function calls. When we pass a nonconst

object to a function that takes a const reference, then the function treats that object as if it

were const, and the compiler will permit it to call only const members of such objects.

Note that we included the const qualifier in both the declaration of the function inside the

class definition and in the definition of the function. As always, argument types must be

identical between the function declaration and definition (§4.4/69).

9.2.2 Nonmember functions

Our new design made read and grade into member functions. What about compare? Should

it also be a member of the class?

As we'll see in §9.5/164, §11.2.4/193, §11.3.2/196, §12.5/222, and §13.2.1/234, the C++

language requires certain kinds of functions to be defined as members. It turns out that

compare is not one of these, so we have the option to do it either way. There is a general rule

that helps us decide what to do in such cases: If the function changes the state of an object,

then it ought to be a member of that object. Unfortunately, even this rule says nothing about

functions that do not change the state of the object, so we still must decide what to do about

compare.

To do so, we should think a bit about what the function does and how users might want to call

it. The compare function decides which of its Student_info arguments is "less than" the other,

based on inspecting the arguments' name members. We'll see in §12.2/213 that there is

sometimes an advantage to defining operations such as compare outside the class body.

Therefore, we shall leave compare as a global function, which we will implement shortly.

9.3 Protection

By defining the grade and read functions as members, we have fixed half of our problem:

Users of type Student_info no longer have to manipulate the internal state of the object

directly. However, they still can do so. We would like to hide the data, and allow users to

access the data only through our member functions.

C++ supports data hiding by allowing authors of types to say which members of those types

are public, and hence accessible to all users of the type, and which parts are private, and

inaccessible to users of the type:

class Student_info {

public:

 // interface goes here

 double grade() const;

 std::istream& read(std::istream&);

 private:

 // implementation goes here

 std::string name;

 double midterm, final;
 std::vector<double> homework;

};

We've made a couple of changes to our definition of Student_info: We've said class instead

of struct, and we've added two protection labels. Each protection label defines the

accessibility of all the members that follow the label. Labels can occur in any order within the

class, and can occur multiple times.

By putting name, homework, midterm, and final after a private label, we have made these

data elements inaccessible to users of the Student_info type. References to these members

from nonmember functions are now illegal, and the compiler will generate a diagnostic

message to the effect that the member is private or inaccessible. The members in the public

section are fully available; any user may call read or grade.

What about the use of class instead of struct? We can use either keyword to define a new

type. The only difference between saying struct and class is the default protection, which

applies to every member defined before the first protection label. If we say class

Student_info, then every member between the first { and the first protection label is private. If,

instead, we write struct Student_info, then every member declared between the { and the first

protection label is public. For example,

class Student_info {

public:

 double grade() const;

 // etc.

};

is equivalent to

struct Student_info {

 double grade() const; // public by default

 // etc.

};

and

class Student_info {

 std::string name; // private by default

 // other private members

public:

 double grade() const;

 // other public members

};

is equivalent to

struct Student_info {

private:

 std::string name;

 // other private members

public:

 double grade() const;

 // other public members

};

In each of these definitions, we're saying that we'll allow users to get at the member functions

of Student_info objects, but we will not allow them to access the data members.

There is no difference between what we can do with a struct or a class. In fact, there is no

way, short of reading the code, for our users to distinguish whether we used struct or class to

define our class type. Our choice of struct or class can have a useful documentation role. In

general, our programming style is to reserve struct to denote simple types whose data

structure we intend to expose. For that reason, we used struct to define our original

Student_info data type in Chapter 4. Now that we intend to build a type that will control

access to its members, we use class to define our Student_info type.

9.3.1 Accessor functions

At this point, we've hidden our data members, so that users can no longer modify the data in a

Student_info object. Instead, they must use the read operation to set the data members, and

the grade function to find out the final grade for a given Student_info. There's one more

operation that we must still provide: We must give users a way to get at the student's name.

For example, think a bit about the program in §4.5/70, in which we wrote a formatted report of

student grades. That program needs to access the student's name in order to generate the

report. Although we want to allow read access, we do not want to allow write access. Doing

so is straightforward:

class Student_info {

public:

double grade() const;

 std::istream& read(std::istream&) // must change definition

 std::string name() const { return n; } // added

private:

 std::string n; // changed

 double midterm, final;

 std::vector<double> homework;

};

Instead of giving our users access to the name data member, we've added a member

function, also named name, that will give (read-only) access to the corresponding data value.

Of course, we have to change the data member's name to avoid confusing it with the name of

the function.

The name function is a const member function, which takes no arguments and which returns

a string that is a copy of n. By copying n, rather than returning a reference to it, we ensure

that users can read but not change the value of n. Because we need only read access to the

data, we declare the member function as const.

When we defined grade and read, we did so outside the class definition. When we define a

member function as part of the class definition, as we have done here with the name function,

we are hinting to the compiler that it should avoid function-call overhead and expand calls to

the function inline (§4.6/72) if possible.

Functions such as name are often called accessor functions. This nomenclature is

potentially misleading, because it implies that we are granting access to a part of our data

structure. Indeed, historically, such functions were often introduced to allow easy access to

hidden data, thus breaking the encapsulation that we were trying to achieve. Accessors

should be provided only when they are part of the abstract interface of the class. In the case

of Student_info, our abstraction is that of a student and a corresponding final grade.

Therefore, the notion of a student name is part of our abstraction, and it is fitting to provide a

name function. On the other hand, we do not provide accessors to the other

grades—midterm, final, or homework. These grades are an essential part of our

implementation, but they are not part of our interface.

Having added the name member function, we can now write the compare function:

bool compare(const Student_info& x, const Student_info& y)

{

 return x.name() < y.name();

}

This function looks a lot like the version from §4.2.2/64. The only difference is how we get at

the student's name. In the original version, we could access the data member directly; here,

we must invoke the name function, which returns the student's name. Because compare is

part of our interface, we should include a declaration for this function in the same header that

defines Student_info and we should include this definition in the associated source file that

contains the definitions of the member functions.

9.3.2 Testing for empty

Having hidden our members and provided the appropriate accessor function, we have one

remaining problem: There is still a reason that a user might want to look directly at an object's

data. For example, consider what happens if we call grade on an object for which read has

not been called:

Student_info s;

cout << s.grade() << endl; // exception: s has no data

Because we haven't called read to give s any values, the homework member of s will be

empty, and the call to grade will throw an exception. Although our users can catch the

exception, they have no way to detect the problem in advance, so that they can avoid making

the call at all.

Using the original Student_info structure from Chapter 4, users could test the homework

member to determine whether a call to grade would succeed. If homework turned out to be

empty, then they knew not to call grade. This approach worked, but at the cost of forcing

users to know about the structure of the object in order to perform the test. We can do better,

by offering the same test in a more abstract form:

class Student_info {

public:

 bool valid() const { return !homework.empty(); }

 // as before

};

The valid function will tell the user whether the object contains valid data, with a value of true

indicating that the student did at least one homework assignment, and therefore that it is

possible to compute the student's grade. Our users can call valid to determine whether

subsequent operations will succeed. For example, before calling grade, a user can check

whether the object is valid, thereby avoiding a potential exception.

9.4 The Student_info class

At this point we have resolved most of our objections to the original Student_info structure, so

it is worth reviewing what we've done:

class Student_info {

public:

 std::string name() const { return n; }

 bool valid() const { return !homework.empty(); }

 // as defined in §9.2.1/157, and changed to read into n instead of name

 std::istream& read(std::istream&);

 double grade() const; // as defined in §9.2.1/158

private:

 std::string n;

 double midterm, final;

 std::vector<double> homework;

};

bool compare(const Student_info&, const Student_info&);

Users can change the state of a Student_info object only by calling the read member

function. They cannot reach inside an object and directly change any of the data members.

Instead, we provide operations that hide our implementation. Finally, all the operations on

Student_info objects are logically gathered together.

9.5 Constructors

Although our class is reasonably complete and usable as it stands, there is one more thing to

think about: We have not said anything about what happens when objects are created.

We know that the library guarantees that when we create an object of a library class, the

object starts with an appropriate value. For example, when we define a string or a vector

without an initial value, we get an empty string or vector. Both string and vector also allow us

to give a new object an initial value, such as specifying a size or a count and a fill character.

Constructors are special member functions that define how objects are initialized. There is

no way to call a constructor explicitly. Instead, creating an object of class type calls the

appropriate constructor automatically as a side effect.

If we do not define any constructors, the compiler will synthesize one for us. We'll have more

to say about synthesized operations in §11.3.5/201. What we need to know now is what

happens if we do not define any constructors. In this case, our users will be able to define

Student_info objects, but will not be able to initialize them explicitly, except as a copies of

other Student_info objects.

The synthesized constructor will initialize the data members to a value that depends on how

the object is being created. If the object is a local variable, then the data members will be be

default-initialized (§3.1/38). If the object is used to initialize a container element, either as a

side effect of adding a new element to a map, or as the elements of a container defined to

have a given size, then the members will be value-initialized (§7.2/125). These rules are

slightly complicated, but their essentials are:

If an object is of a class type that defines one or more constructors, then the

appropriate constructor completely controls initialization of the objects of that class.

If an object is of built-in type, then value-initializing it sets it to zero, and default-

initializing it gives it an undefined value.

Otherwise, the object can be only of a class type that does not define any

constructors. In that case, value- or default-initializing the object value- or

default-initializes each of its data members. This initialization process will be recursive

if any of the data members is of a class type with its own constructor.

As it stands, our Student_info class is in this third category: It is a class type, but we do not

explicitly say how to construct Student_info objects. So, if we define a local Student_info

variable, then the n and homework members will be automatically initialized to the empty

string and vector respectively, because they are class objects with constructors. In contrast,

default-initializing midterm and final will give them undefined values, meaning they will hold

whatever garbage happens to be in memory when the object is created.

Given our simple operations, this behavior may appear harmless: None of our operations

uses the value of midterm or final without first initializing the object by calling read, which

assigns values to these members. However, it is normally good practice to ensure that every

data member has a sensible value at all times. For example, it is possible that later we (or a

subsequent maintainer of our code) will add operations that examine these data members. If

we don't initialize them in the constructor, then these new operations might cause future

failures. Moreover, as we'll see in §11.3.5/201, even though we do not explicitly use midterm

or final, there are synthesized operations on the class that could do so. Any use other than

writing to an undefined value is illegal (§3.1/38), and so, strictly speaking, we must initialize

these values.

In practice, we'll want to define two constructors: The first constructor takes no arguments and

creates an empty Student_info object; the second takes a reference to an input stream and

initializes the object by reading a student record from that stream. This strategy allows our

users to write code such as

Student_info s; // an empty Student_info

Student_info s2(cin); // initialize s2 by reading from cin

Constructors are distinguished from other member functions in two ways: They have the

same name as the name of the class itself, and they have no return type. Constructors are

similar to other functions in that we can define multiple versions of constructors that differ in

terms of the number or type of their arguments. With this knowledge, we might update our

class to add our two constructors:

class Student_info {

public:

 Student_info() // construct an empty Student_info object

 Student_info(std::istream&); // construct one by reading a stream

 // as before

};

9.5.1 The default constructor

The constructor that takes no arguments is known as the default constructor. Its job is

normally to ensure that its object's data members are properly initialized. In the case of

Student_info objects, we want to initialize the data to indicate that we haven't yet read a

record: We'll want the homework member to be an empty vector, the n member to be an

empty string, and the midterm and final members to be initialized to zero:

Student_info::Student_info(): midterm(O), final(0) { }

The constructor definition uses some new syntax. Between the : and the { is a sequence of

constructor initializers, which tell the compiler to initialize the given members with the

values that appear between the corresponding parentheses. Therefore, this particular default

constructor works by explicitly setting the midterm and final grades to 0. Other than that, the

constructor does no overt work: The body of the function is empty. As we shall see, n and

homework are implicitly initialized.

Understanding constructor initializers is crucial to understanding how to create and initialize

objects. When we create a new class object, several steps happen in sequence:

The implementation allocates memory to hold the object.1.

It initializes the object, as directed by the constructor's initializer list.2.

It executes the constructor body.3.

The implementation initializes every data member of every object, regardless of whether the

constructor initializer list mentions those members. The constructor body may change these

initial values subsequently, but the initialization happens before the constructor body begins

execution. It is usually better to give a member an initial value explicitly, rather than assigning

to it in the body of the constructor. By initializing rather than assigning a value, we avoid doing

the same work twice.

We said that constructors exist to ensure that objects are created with their data members in a

sensible state. In general, this design goal means that every constructor should initialize every

data member. The need to give members a value is especially critical for members of built-in

type. If the constructor fails to initialize such members, objects declared at local scope will be

initialized with garbage, which is almost never correct.

We can now understand why we said that the Student_info default constructor did no other

"overt" work. Although we explicitly initialized only midterm and final, the other data members

are initialized implicitly. Specifically, n is initialized by the string default constructor, and

homework is initialized by the vector default constructor.

9.5.2 Constructors with arguments

Our second Student_info constructor is even easier:

Student_info::Student_info(istream& is) { read(is); }

This constructor delegates the real work to the read function. The constructor has no explicit

initializer, so the homework and n members will be initialized by the default constructors for

vector and string respectively. The midterm and final members will have explicit initial values

only if the object is being value-initialized. This lack of initialization doesn't matter, because

read immediately gives these variables new values.

9.6 Using the Student_info class

Our new Student_info class is now quite different from the original Student_info structure

from Chapter 4. Not surprisingly, using the class is different from using the original structure.

After all, our objective was to prevent users from being able to change our data values, which

we accomplished by making them private. Instead, we intend for users to write their programs

in terms of the interface provided by our class. As an example, we can rewrite our original

main program from §4.5/70, which wrote the final grades for the students in a formatted

report, to use this version of the class:

int main()

{

 vector<Student_info> students;

 Student_info record;

 string::size_type maxlen = 0;

 // read and store the data

 while (record.read(cin)) { // changed

 maxlen = max(maxlen, record.name().size()) // changed

 students.push_back(record);

 }

 // alphabetize the student records

 sort(students.begin(), students.end(), compare);

 // write the names and grades

 for (vector<Student_info>::size_type i = 0;

 i != students.size(); ++i) {

 cout << students[i].name() // changed

 << string(maxlen + 1 - students[i].name.size(), ' ');

 try {

 double final_grade = students[i].grade(); // changed

 streamsize prec = cout.precision();

 cout << setprecision(3) << final_grade

 << setprecision(prec) << endl;

 } catch (domain_error e) {

 cout << e.what() << endl;

 }

 }

 return 0;

}

The changes here are to the calls of name, read, and grade. So, for example, the first while

loop now says

while (record.read(cin)) {

instead of

while (read(cin, record)) {

Our revised version calls the member read of the object record. The earlier version called the

global read function, passing it record as an explicit parameter. Both calls have the same

effect: The object record will be assigned values read from cin.

9.7 Details

User-defined types can be defined as either structs or classes. The only difference is in the

default protection that applies to members defined before the first protection label: Members

defined after struct are public; those defined after class are private.

Protection labels control access to members of a class type: public members are generally

accessible; private members are accessible only to members of the class. Protection labels

can appear in any order and multiple times within a class.

Member functions: Types may define member functions as well as data. Member functions

are implicitly called on behalf of a specific object. References to member data or functions

from within a member function are implicitly bound to that object.

Member functions can be defined inside or outside the class definition. Defining a member

function inside the class asks the implementation to expand calls to it inline, thus avoiding

function call overhead. Outside the class, the name of the function must be qualified to

indicate that it is from the class scope: class-name::member-name refers to the member

member-name from the class class-name.

Member functions can be defined as const by inserting the const keyword after the

parameter list. Such members may not change the state of the object on which they are

invoked. Only const member functions may be called for const objects.

Constructors are special member functions that define how objects of the type are initialized.

Constructors have the same name as the class and have no return value. A class can define

multiple constructors as long as they differ in the number or types of their arguments. It is

good practice for every constructor to ensure that every data member has a sensible value on

exit from the constructor.

Constructor initializer list: A constructor initializer is a comma-separated list of member-

name (value) pairs. Each member-name is initialized from the associated value. Data

members that are not explicitly initialized are implicitly initialized.

The order in which members are initialized is determined by the order of declaration in the

class, so care must be taken when using one class member to initialize another. It is safer

practice to avoid such interdependence by assigning values to these members inside the

constructor body and not initializing them in the constructor initializer.

Exercises

9-0. Compile, execute, and test the programs in this chapter.

9-1. Reimplement the Student_info class so that it calculates the final grade when reading

the student's record, and stores that grade in the object. Reimplement the grade function to

use this precomputed value.

9-2. If we define the name function as a plain, nonconst member function, what other

functions in our system must change and why?

9-3. Our grade function was written to throw an exception if a user tried to calculate a grade

for a Student_info object whose values had not yet been read. Users who care are expected

to catch this exception. Write a program that triggers the exception but does not catch it. Write

a program that catches the exception.

9-4. Rewrite your program from the previous exercise to use the valid function, thereby

avoiding the exception altogether.

9-5. Write a class and associated functions to generate grades for students who take the

course for pass/fail credit. Assume that only the midterm and final grades matter, and that a

student passes with an average exam score greater than 60. The report should list the

students in alphabetical order, and indicate P or F as the grade.

9-6. Rewrite the grading program for the pass/fail students so that the report shows all the

students who passed, followed by all the students who failed.

9-7. The read_hw function §4.1.3/57 solves a general problem (reading a sequence of values

into a vector) even though its name suggests that it should be part of the implementation of

Student_info. Of course, we could change its name—but suppose, instead, that you wanted

to integrate it with the rest of the Student_info code, in order to clarify that it was not intended

for public access despite its apparent generality? How would you do so?

10

Managing memory and low-level data structures

Until now, we have been storing data either in variables or in containers, such as vector, that

come from the standard library. The reason for this strategy is that the standard- library

facilities are usually more flexible and easier to use than the facilities that are part of the core

language.

Once you know how to use the library, the logical next step is to understand how it works. The

key to this understanding turns out to involve core-language programming tools and

techniques that come in handy in other contexts as well. We use the term low- level to refer

to these ideas because they underlie the standard library and because they correspond

closely to the way typical computer hardware works. For these reasons, they tend to be

harder to use, and are more dangerous, but they sometimes can be more efficient—provided

that you understand them thoroughly—than are the related ideas in the standard library.

Because no library can solve all problems, many C++ programs wind up using low-level

techniques from time to time.

This chapter departs from our usual style of presenting problems before their solutions,

because the tools that we are going to present work at a low enough level that it is hard to use

any one tool by itself to solve useful problems. Instead, we are going to begin by presenting

two related ideas: arrays and pointers. Once we have done so, we'll show how those ideas

combine with new-expressions and delete-expressions to allow a form of dynamic memory

allocation that programmers can control more directly than they can control the automatic

memory management offered by library classes such as vector and list.

Once we understand how arrays and pointers work, we will explore, in Chapter 11, how the

library uses these facilities to implement its containers.

10.1 Pointers and arrays

An array is a kind of container, similar to a vector but less powerful. A pointer is a kind of

random-access iterator that is essential for accessing elements of arrays, and has other uses as

well. Pointers and arrays are among the most primitive data structures in C and C++. They are

virtually inseparable from one another, in the sense that it is impossible to do anything useful with an

array without using pointers, and pointers become much more useful in the presence of arrays.

Because these two notions are so closely intertwined, we shall explain them both before trying to

solve significant problems with either. It is easier to explain pointers without understanding arrays

than to explain arrays without understanding pointers, so we shall discuss pointers first.

10.1.1 Pointers

A pointer is a value that represents the address of an object. Every distinct object has a unique

address, which denotes the part of the computer's memory that contains the object. If you can

access an object, you can obtain its address, and vice versa. For example, if x is an object, then &x

is the address of that object, and if p is the address of an object, then *p is the object itself. The & in

&x is an address operator, and is distinct from the use of & to define reference types (§4.1.2/54).

The * is a dereference operator, which works analogously to the way * works when applied to any

other iterator (§5.2.2/81). If p contains the address of x, we also say that p is a pointer that points

to x. It is common to represent such a state of affairs with a diagram such as

As with other built-in types, a local variable that is a pointer has no meaningful value until we give it

one. Programmers frequently use the value 0 to initialize pointers, because converting 0 to a pointer

yields a value that is guaranteed to be distinct from a pointer to any object. Moreover, the constant 0

is the only integer value that can be converted to a pointer type. The resulting value, often called a

null pointer, is often useful in comparisons.

As with all C++ values, pointers have types. The address of an object of type T has type "pointer to

T," written as T* in definitions and similar contexts.

Suppose that x is an object of type int, defined as

int x;

and we want to define p to have a type that will allow p to contain the address of x. We do so by

saying that the type of p is "pointer to int," which we say implicitly by defining *p to have type int:

int *p; // *p has type int

Here *p is a declarator, which is the part of a definition that defines a single variable. Even though

the * and the p are part of a single declarator, most C++ programmers write this definition as

int* p; // p has type int*

to emphasize the notion that p has a particular type (i.e., int*). These two usages are equivalent

because spaces around the * are neutral. However, the latter usage conceals a pitfall that is so

important that it deserves special attention:

int* p, q; // What does this definition mean?

defines p as an object of type "pointer to int" and q as an object of type int. This example is easier to

understand if we view it this way:

int *p, q; // *p and q have type int

or, for that matter, this way:

int (*p), q; // (*p) and q have type int

Still better, we can make our intentions crystal clear by writing

int* p; // *p has type int

int q; // q has type int

We now know enough to write a simple program that uses pointers:

int main()

{

 int x = 5;

 // p points to x
 int* p = &x;

 cout << "x = " << x << endl;

 // change the value of x through p
 *p = 6;

 cout << "x = " << x << endl;

 return 0;

}

The output of this program will be

x = 5

x = 6

Immediately after we have defined p, the state of our variables is

It should be no surprise that x is 5 when we execute the first output expression. The next statement

changes the value of x to 6 by executing *p = 6. Remember, once p contains the address of x, *p

and x are two different ways of referring to the same object. Thus, the x is 6 when the second

output expression is executed.

It may be useful to think of a pointer to an object as an iterator that refers to the only element of a

"container" that contains that object and nothing else.

10.1.2 Pointers to functions

In §6.2.2/113, we saw a program that passed a function as an argument to another function, and

noted that there was slightly more going on there than met the eye. The truth is that functions are

not objects, and there is no way to copy or assign them, or to pass them as arguments directly. In

particular, there is no way for a program to create or modify a function—only the compiler can do

that. All that a program can ever do with a function is call it or take its address.

Nevertheless, we can call a function with another function as an argument, as we did when we

passed median_analysis as an argument to write_analysis in §6.2.2/112. What happens is that

the compiler quietly translates such calls so as to use pointers to functions instead of using

functions directly. Pointers to functions behave similarly to any other pointers. Once you have

dereferenced such a pointer, however, all you can do with the resulting function is call it—or take the

function's address yet again.

Declarators for pointers to functions resemble other declarators. For example, just as we wrote

int *p;

to say that *p has type int, thereby implying that p is a pointer, we might write

int (*fp)(int);

to say that if we dereference fp, and call it with an int argument, the result has type int. By

implication, fp is a pointer to a function that takes an int argument and returns an int result.

Because all that you can do with a function is to take its address or call it, any use of a function that

is not a call is assumed to be taking its address, even without an explicit &. Similarly, you can call a

pointer to a function without dereferencing the pointer explicitly. So, for example, if we have a

function whose type matches fp, such as

int next(int n)

{

 return n + 1;

}

then we can make fp point to next by writing either of the following two statements:

// these two statements are equivalent
fp = &next;

fp = next;

Similarly, if we have an int variable named i, we can use fp to call next, and thereby increment i, by

writing either

// these two statements are equivalent
i = (*fp)(i);

i = fp(i);

Finally, if we write a function that looks like it takes another function as a parameter, the compiler

quietly translates the parameter to be a pointer to a function instead. So, for example, in the

write_analysis function in §6.2.2/113, the parameter that we wrote as

double analysis(const vector<Student_info>&)

could equivalently have been written as

double (*analysis)(const vector<Student_info>&)

However, this automatic translation does not apply to return values from functions. If we wanted to

write a function that returned a function pointer, of the same type as the parameter to

write_analysis, then we would have to say explicitly that the function returns a pointer. One way to

do so is to begin by using a typedef to define, say, analysis_fp as the name of the type of an

appropriate pointer:

typedef double (*analysis_fp)(const vector<Student_info>&);

Then we can use that type to declare our function:

// get_analysis_ptr returns a pointer to an analysis function
analysis_fp get_analysis_ptr();

The alternative

double (*get_analysis_ptr())(const vector<Student_info>&);

is arcane. In effect, we are saying that if you call get_analysis_ptr(), and dereference the result,

what you get is a function that takes a const vector<Student_info>& and returns a double.

Fortunately, functions that return pointers to functions are rare! We use this syntax nowhere else in

this book, but we explain it in more detail in §A.l/295. Pointers to functions are most commonly used

as arguments to other functions. As an example, here is a sample implementation of the find_if

library function:

template<class In, class Pred>

In find_if(In begin, In end, Pred f)

{

 while (begin != end && !f(*begin))

 ++begin;

 return begin;

}

In this example, Pred can potentially be any type at all, as long as f(*begin) has a meaningful value.

Suppose we have a predicate function, such as

bool is_negative(int n)

{

 return n < 0;

}

and we use find_if to locate the first negative element in a vector<int> named v:

vector<int>::iterator i = find_if(v.begin(), v.end(), is_negative);

We are able to write is_negative instead of &is_negative only because the name of a function

turns into a pointer to the function automatically. Similarly, the implementation of find_if is permitted

to call f(*beg) instead of (*f)(*beg) only because calling a function pointer automatically calls the

function to which it points.

10.1.3 Arrays

An array is a kind of container that is part of the core language rather than part of the standard

library. Every array contains a sequence of one or more objects of the same type. The number of

elements in the array must be known at compile time, which requirement implies that arrays cannot

grow or shrink dynamically the way library containers do.

Because arrays are not class types, they have no members. In particular, they do not have the

size_type member to name an appropriate type to deal with the size of an array. Instead, the

<cstddef> header defines size_t, which is a more general type. The implementation defines size_t

as the appropriate unsigned type large enough to hold the size of any object. Thus, we can (and

should) use size_t to refer to the size of an array, similarly to the way we use size_type to deal with

the size of a container.

For example, a three-dimensional geometry program might represent a point this way:

double coords[3];

knowing that the number of dimensions in physical space is unlikely to change any time soon. A

more experienced programmer might represent the point this way:

const size_t NDim = 3;

double coords[NDim];

taking advantage, for documentation purposes, of the fact that the value of NDim is known at

compilation time (because it is a const size_t that is initialized from a constant). Using NDim

instead of 3 distinguishes the 3 that represents the number of dimensions from a 3 that represents,

say, the number of sides in a triangle.

No matter how we define an array, there is always a fundamental relationship between arrays and

pointers: Whenever we use the name of an array as a value, that name represents a pointer to the

initial element of the array. We have defined coords as an array, so using coords as a value gives

us the address of the array's initial element. As with any other pointer, we can dereference it with

the * operator to get the object to which it points, so that executing

*coords = 1.5;

sets the initial element of coords to 1. 5.

10.1.4 Pointer arithmetic

We now know how to define arrays, and how to obtain the address of the initial element of an array.

What about the other elements? Recall that in §10.1/169 we said that a pointer was a kind of

iterator. More specifically, a pointer is a random-access iterator. This fact gives us a second

fundamental property of arrays: If p points to the mth element of an array, then p + n points to the

(m + n)th element of the array and (p - n) points to the (m - n)th element—assuming, of course,

that these elements exist.

Continuing our example, and noting that, as usual, the initial element of coords has number 0, we

see that coord + 1 is the address of element number 1 of the coords array (i.e., the element after

the initial element), and coords + 2 is the address of element number 2, which is also the last

element because we defined coords to have three elements.

What about coords + 3? That value represents the address of where element number 3 would be in

the coords array if the element existed—but the element doesn't exist.

Nevertheless, coords + 3 is a valid pointer, even though it doesn't point to an element. Analogous

with vector and string iterators, adding n to the address of the initial element of an n-element array

yields an address that is not guaranteed to be the address of any object, but it is one that we can

use for comparisons. Moreover, the rules that relate p, p + n, and p - n are valid even if one or

more of those expressions yields a value that is one (but not more than one) past the end of an

array.

So, for example, we can copy the contents of coords into a vector by writing

vector<double> v;

copy(coords, coords + NDim, back_inserter(v));

where, as before, NDim is just a fancy way of spelling 3. In this example, coords + NDim does not

point to an element, but it is a valid off-the-end iterator, and passing it as the second argument to

copy presents no difficulty.

As another example, because we can construct a vector from two iterators, we could have

constructed v directly as a copy of the elements in coords by writing

vector<double> v(coords, coords + NDim);

In other words, suppose that a is an n-element array, that v is a vector, and that we want to apply

standard-library algorithms to elements of a. Then, wherever we might use v.begin() and v.end() to

give standard-library algorithms access to elements of v, we should use a and a + n as arguments

when we wish to apply these algorithms to the elements of a.

If p and q are pointers to elements of the same array, then p - q is an integer that represents the

distance in elements between p and q. More precisely, p - q is defined so that (p - q) + q is equal to

p. Because p - q might be negative, it has a signed integer type. Whether that type is int or long

depends on the implementation, so the library provides a synonym, named ptrdiff_t, to represent

the appropriate type. Like size_t, the ptrdiff_t type is defined in the <cstddef> header.

We saw in §8.2.7/150 that there is no guarantee of being able to compute an iterator that refers to a

point before the beginning of a container. Analogously, it is never legitimate to compute an address

that falls before the beginning of an array. In other words, if a is an n-element array, then a+i is valid

if and only if 0 ≤ i ≤ n, and a+i refers to an element of a if and only if 0 ≤ i < n (but not if i and n are

equal).

10.1.5 Indexing

We said in §10.1/169 that pointers are random-access iterators for arrays. Therefore, like all

random-access iterators, they support indexing. Specifically, if p points to the mth element of an

array, p[n] is the m+nth element of the array—not the address of the element, but the element itself.

Recall from §10.1.3/174 that the name of an array is the address of the initial element of the array.

This fact, together with the definition of p[n], implies that if a is an array, a[n] is the nth element of

the array. More formally, if p is a pointer and n is an integer, then p[n] is equivalent to *(p + n).

In most languages, the behavior of indexing is fundamental and obvious. In C++, this behavior is not

a direct property of arrays. Rather, it is a corollary to the properties of array names and pointers,

and the fact that pointers supply the operations defined for random-access iterators.

10.1.6 Array initialization

Arrays have an important property that the standard-library containers do not share: There is a

convenient syntax for giving an initial value to each element of an array. Moreover, using this syntax

often lets us avoid having to state the size of the array explicitly.

For example, if we were writing a program that deals with dates, we might like to know how many

days are in each month. One way to do so would be the following:

const int month_lengths[] = {

 31, 28, 31, 30, 31, 30, // we will deal elsewhere with leap years
 31, 31, 30, 31, 30, 31

};

Here, we have given an initial value to each element that corresponds to the length of a month, with

January being month 0 and December being month 11. Now, we can use month_lengths[i] to refer

to the length of month i.

Note that we did not say explicitly how many elements the month_lengths array has. Because we

initialized it explicitly, the compiler will count elements for us—a task to which it is much better suited

than we.

10.2 String literals revisited

We have finally learned enough to understand the true meaning of string literals: A string

literal is really an array of const char with one more element than the number of characters in

the literal. That extra character is a null character (i.e., '\0') that the compiler automatically

appends to the rest of the characters. In other words, if we define

const char hello[] = { 'H', 'e', 'l', 'l', 'o', '\0' };

then the variable hello has exactly the same meaning as the string literal "Hello", except, of

course, that the variable and the literal are two distinct objects and, therefore, have different

addresses.

The reason that the compiler inserts the null character is to allow the programmer to locate

the end of the literal given only the address of its initial character. The null character acts as

an end marker, so that the programmer can know where the string ends. There is a library

function in <cstring> called strlen, which tells us how many characters are in a string literal or

other null-terminated array of characters, not counting the null at the end. The strlen function

might be implemented as follows:

// Example implementation of standard-library function

size_t strlen(const char* p)

{

 size_t size = 0;

 while (*p++ != '\0')

 ++size;

 return size;

}

Recall from §10.1.3/174 that size_t is an unsigned integral type that is appropriate to contain

the size of any array, which makes it the appropriate type for size. The strlen function counts

characters in the array denoted by p up to but not including the null. Because the variable

hello has the same meaning as the string literal "Hello",

string s(hello);

will define a string variable named s that contains a copy of the characters stored in hello, just

as

string s("Hello");

defines a string variable named s that contains a copy of the characters in "Hello". Moreover,

because we can construct a string from two iterators, we can also write

string s(hello, hello + strlen(hello));

Here, using the name of the array hello yields a pointer to the initial character of the hello

array, and hello + strlen(hello) is a pointer to the '\0' that is at the end of the array which is

also one character past the o of hello. Because pointers are iterators, we can construct a

string from two pointers, similar to what we did in §6.1.1/103, where we created a new string

from two iterators. In both cases, the first iterator refers to the initial character of the sequence

that we wish to use to initialize the string that we are constructing, and the second iterator

refers to one past the last character.

10.3 Initializing arrays of character pointers

We said in §10.2/176 that a string literal is just a convenient way of writing the address of the

initial character of a null-terminated sequence of characters. We said in §10.1.6/176 that we

can initialize the elements of an array by giving a sequence of appropriate values, enclosed in

curly braces, as an initializer. By combining these two facts, we learn that we can initialize an

array of character pointers by giving a sequence of string literals.

This claim is quite a mouthful. To make it concrete, suppose that we wish to convert numeric

grades to letter grades according to the following rule:

If the grade is at least 97 94 90 87 84 80 77 74 70 60 0

then the letter grade is A+ A A- B+ B B- C+ C C- D F

Here is a program that does the conversion:

string letter_grade(double grade)

{

 // range posts for numeric grades

 static const double numbers[] = {

 97, 94, 90, 87, 84, 80, 77, 74, 70, 60, 0

 };

 // names for the letter grades

 static const char* const letters[] = {

 "A+", "A", "A-", "B+", "B", "B-", "C+", "C", "C-", "D", "F"

 };

 // compute the number of grades given the size of the array

 // and the size of a single element

 static const size_t ngrades = sizeof(numbers)/sizeof(*numbers);

 // given a numeric grade, find and return the associated letter grade

 for (size_t i = 0; i < ngrades; ++i) {

 if (grade >= numbers[i])

 return letters[i];

 }

 return "?\?\?";

}

The definition of numbers uses the keyword static, which we saw in §6.1.3/107. In the

present context, it tells the compiler to initialize the letters and numbers arrays only once, no

later than the first time each array is used. Without the static, the compiler would have

initialized the array for each call, which would have slowed the program needlessly. We have

said that the array elements are const because we do not intend to change them—which is

what allows us to get away with initializing the array only once.

The letters array is an array of constant pointers to const char. In this case, each element

points to the initial element of its respective letter-grade string literal.

The definition of ngrades introduces a new keyword, sizeof, which we use to determine how

many elements the numbers array has without having to count the elements ourselves. If e is

an expression, then sizeof(e) returns a size_t value that tells us how much memory an object

of the type of e consumes. It does so without actually evaluating the expression, which is

possible because it does not need to evaluate the expression in order to determine its type,

and because all objects of a given type occupy the same amount of storage.

The sizeof operator reports its result in bytes, which are storage units whose exact nature

varies from one implementation to another. The only guarantees about bytes are that a byte

contains at least eight bits, every object occupies at least one byte, and that a char occupies

exactly one byte.

Of course, we want to determine how many elements the numbers array has, not how many

bytes it occupies. To do so, we divide the size of the entire array by the size of a single

element. Recall from §10.1.3/174 that because numbers is an array, *numbers is an element

of the array. It happens to be the initial element, but the particular element is irrelevant in this

context because all elements are the same size. What is relevant is that sizeof(*numbers) is

the size of a single element of the numbers array, so that sizeof(numbers)/sizeof(*numbers)

is the number of elements in the array.

Once we have established our tables, determining the letter grade is simplicity itself. We look

sequentially at the elements of numbers until we find that grade is greater than or equal to

one of them. When we find the relevant element of numbers, we return the corresponding

element of letters. This element is a pointer, but we have already seen in §10.2/176 that we

can convert a character pointer to a string.

If we cannot find an appropriate letter grade, it means that our user gave us a negative

numeric grade, in which case we return a nonsense letter grade. The \ characters are there

because, as we explain in more detail in §A.2.1.4/302, C++ programs should not contain two

or more consecutive question marks. We must, therefore, use "?\?\?" to represent ??? in a

program.

10.4 Arguments to main

Now that we understand pointers and character arrays, we can understand how to pass arguments to the main function.

Most operating systems provide a way to pass a sequence of character strings to main as an argument, if the main

function is willing to accept them. The way the author of main signals such willingness is by giving main two parameters:

an int and a pointer to a pointer to char. Like any parameters, these can have arbitrary names, but programmers often call

them argc and argv. The value of argv is a pointer to the initial element of an array of pointers, one for each argument.

The value of argc is the number of pointers in the array of which argv points to the initial element. The initial element of that

array always represents the name by which the program is called, so argc is always at least 1. The arguments, if any,

occupy subsequent elements of the array.

As an example, this program writes its arguments, if any, with spaces between them:

int main(int argc, char** argv)

{

 // if there are arguments, write them

 if (argc > 1) {

 int i; // declare i outside the for because we need it after the loop finishes

 for (i = 1; i < argc-1; ++i) // write all but the last entry and a space

 cout << argv[i] << " "; // argv[i] is a char*

 cout << argv[i] << endl; // write the last entry but not a space

 }

 return 0;

}

If we compile this program and put the resulting executable in a file called say, then by asking the system to execute

say Hello, world

we will cause our program to write

Hello, world

In this case, argc will be 3, and the three elements of argv will be pointers to the initial characters of arrays initialized with

say, Hello, and world respectively. We can visualize the value of argv this way:

10.5 Reading and writing files

The programs in this book use only cin and cout for their input and output. Larger

applications, however, often need to work with multiple files, both for input and output. C++

offers a wide variety of facilities for doing so, of which we will discuss only a few.

10.5.1 The standard error stream

It is often useful for a program to be able to comment about what it is doing in a way that is not

part of its regular output. Such comments might notify the user about error conditions, or

might constitute a log of events that the program considers significant.

To make such comments easy to distinguish from ordinary output, the C++ library defines a

standard error stream, in addition to the standard input and output streams. This stream is

often merged with the standard output, but most systems provide a way to separate them.

To write to the standard error stream, C++ programs can use either cerr or clog. These output

streams are both attached to the same destination. The difference between them is how they

handle buffering (§1.1/11).

The clog stream, as its name suggests, is intended for logging purposes. Accordingly, it has

the same buffering properties as cout: It saves characters and writes them when the system

decides that it is appropriate to do so. The cerr stream, on the other hand, always writes its

output immediately. This strategy guarantees that the output will become visible as soon as

possible, but it imposes what might be substantial overhead. Therefore, to write an urgent

complaint, you should use cerr; to produce a running commentary about what the program is

doing, you should use clog.

10.5.2 Dealing with multiple input and output files

The standard input, output, and error streams might or might not be associated with files. For

example, a window system might run C++ programs with these streams connected to a

window associated with the program, and might use completely different facilities to do so

than it would to access disk files.

For this reason, the objects that the C++ standard library uses for file input and output have

different types than the objects that it uses to denote the standard input and output streams. If

you wish to work with an input or output file, you must create an object of type ifstream or

ofstream respectively. This requirement may seem to cause needless difficulty. After all, we

have seen that the library's input and output facilities are all defined in terms of types istream

and ostream. Does the library have another set of definitions for ifstream and ofstream?

Fortunately, the answer is no. As we shall see in Chapter 13, it is possible to say that one type

is similar enough to another that one can stand in for the other. The standard library says

exactly that, by defining ifstream to be a kind of istream and ofstream to be a kind of

ostream. As a result, it is possible to use an ifstream wherever the library expects an istream

and an ofstream wherever the library expects an ostream. The definitions of both of these

classes appear in header <fstream>.

When we define an ifstream or ofstream object, we might expect to have to supply, in the

form of a string, the name of the file that we wish to use. In fact, we are required to supply, not

a string, but rather a pointer to the initial element of a null- terminated character array. One

reason for this curious requirement is to give programs the option of using the input-output

library without using the string facilities. Another reason is historical: The input-output library

predates the string class by several years. A third reason is that this requirement makes it

easier to interface with operating-system input-output facilities, which typically use such

pointers to communicate. Whatever the reasons, the fact is that programs that deal with files

must ultimately express the files' names as pointers to null-terminated character arrays.

As an example, here is a program that copies a file named in to a file named out:

int main()

{

 ifstream infile("in");

 ofstream outfile("out");

 string s;

 while (getline(infile, s))

 outfile << s << endl;

 return 0;

}

This program takes advantage of the fact that a string literal is effectively a pointer to the initial

character of a null-terminated array. If we don't want to have to give the name of the file as a

literal, the best alternative is to store the file name in a string and then use the c_str member

function that we will describe in §12.6/224. So, for example, if file is a string variable that

contains the name of a file that we want to read, we can create an ifstream object that will

read it by defining it as

ifstream infile(file.c_str());

As a final example, here is a program that produces, on its standard output, a copy of the

contents of all the files whose names are given as arguments to main:

int main(int argc, char **argv)

{

 int fail_count = 0;

 // for each file in the input list

 for (int i = 1; i < argc; ++i) {

 ifstream in(argv[i]);

 // if it exists, write its contents, otherwise generate an error message

 if (in) {

 string s;

 while (getline(in, s))

 cout << s << endl;

 } else {

 cerr << "cannot open file " << argv[i] << endl;

 ++fail_count;

 }

 }

 return fail_count;

}

For each argument given to main (§10.4/179), the program creates an ifstream object to read

the file by that name. If the object appears false when used as a condition, that means that

the file does not exist, or that it cannot be read for some reason. Accordingly, the program

complains on cerr, and keeps a count of how many failures it had. If the program created the

ifstream object successfully, it reads the file, one line at a time, into s, and writes the contents

of each line on the standard output.

When the program returns control to the system, it passes back the number of files that it was

unable to read. As usual, a return value of zero indicates success, which in this case will

indicate that we were able to read all the files.

10.6 Three kinds of memory management

So far, we have seen two distinct kinds of memory management, although we have not

discussed them explicitly. The first kind is usually called automatic memory management,

and is associated with local variables: A local variable occupies memory that the system

allocates when it encounters the variable's definition during execution. The system

automatically deallocates that memory at the end of the block that contains the definition.

Once a variable has been deallocated, any pointers to it become invalid. It is the

programmer's responsibility to avoid using such invalid pointers. For example,

// this function deliberately yields an invalid pointer.

// it is intended as a negative example—don't do this!

int* invalid_pointer()

{

 int x;

 return &x; // instant disaster!

}

This function returns the address of the local variable x. Unfortunately, when the function

returns, doing so ends execution of the block that contains the definition of x, which

deallocates x. The pointer that &x created is now invalid, but the function tries to return it

anyway. What happens at this point is anybody's guess. In particular, C++ implementations

are not required to diagnose the error—you get what you get.

If we want to return the address of a variable such as x, one way to do so is to use the other

kind of memory management, by asking for x to be statically allocated:

// This function is completely legitimate.

int* pointer_to_static()

{

 static int x;

 return &x;

}

By saying that x is static, we are saying that we want to allocate it once, and only once, at

some point before the first time that pointer_to_static is ever called, and that we do not want

to deallocate it as long as our program runs. There is nothing wrong with returning the

address of a static variable; the pointer will be valid as long as the program runs, and it will be

irrelevant afterward.

However, static allocation has the potential disadvantage that every call to pointer_to_static

will return a pointer to the same object! Suppose we want to define a function such that each

time we call it, we get a pointer to a brand new object, which stays around until we decide that

we no longer want it. To do so, we use dynamic allocation, which we request by using the

new and delete keywords.

10.6.1 Allocating and deallocating an object

If T is the type of an object, new T is an expression that allocates an object of type T, which is

default-initialized, and yields a pointer to this (unnamed) newly allocated object. It is possible

to give a specific value to use when initializing the object by executing new T(args). The

object stays around until the program either ends or executes delete p (whichever happens

first), where p is (a copy of) the pointer returned by new. In order to delete a pointer, the

pointer must point to an object that was allocated by new, or be equal to zero. Deleting a zero

pointer has no effect. As an example,

int* p = new int(42);

will allocate an unnamed new object of type int, initialize the object to 42, and cause p to point

to that object. We can affect the value of the object by executing statements such as

++*p; // p is now 43

after which the object has the value 43. When we're done with the object, we can execute

delete p;

after which the space occupied by *p is freed and p becomes an invalid pointer, with a value

that we can no longer use until we have assigned a new value to it.

As another example, we might write a function that allocates an int object, initializes it, and

returns a pointer to it:

int* pointer_to_dynamic()

{

 return new int(0);

}

which imposes on its caller the responsibility of freeing the object at an appropriate time.

10.6.2 Allocating and deallocating an array

If T is a type and n is a non-negative integral value, new T[n] allocates an array of n objects of

type T and returns a pointer (which has type T*) to the initial element of the array. Each object

is default-initialized, meaning that if T is a built-in type and the array is allocated at local

scope, then the objects are uninitialized. If T is a class type, then each element is initialized by

running its default constructor.

When T is a class type, there are two important implications of this initialization process: First,

if the class doesn't allow default-initialization, then the compiler will reject the program.

Second, each of the n elements in the array is initialized, which can be a substantial execution

overhead. In Chapter 11, we'll see that the standard library provides a more flexible

mechanism for dynamically allocating arrays. It is often preferable to use that mechanism,

rather than new, when dynamically allocating an array.

Although every ordinary array is required to have at least one element, it is possible to

allocate an "array" with no elements by executing new T[n] with n equal to zero. In this case,

new has a little trouble returning a pointer to the initial element—because there isn't one. What

it does instead is return a valid off-the-end pointer, which we can later use as an argument to

delete[], and which we can think of as being a pointer to where the initial element would be if

it existed.

The point of this curious behavior is to permit programs such as

T* p = new T[n];

vector<T> v(p, p + n);

delete[] p;

to work even if n is zero. The fact that p doesn't point to an element when n is zero is

irrelevant; all that matters is that p and p + n are pointers that can legitimately be compared

with each other and found to be equal. In all cases, the vector will have n elements. It is a

great convenience for such programs to work properly even when n is zero.

Note the use of delete[] in this example. The brackets are necessary to tell the system to

deallocate an entire array, rather than a single element. An array allocated by new[] stays

around until the program ends or until the program executes delete[] p, where p is (a copy of)

the pointer that new[] yielded. Before deallocating the array, the system destroys each

element, in reverse order.

As an example, here is a function that takes a pointer to the initial character of a null-

terminated character array such as a string literal, copies all the characters in the array

(including the null character at the end) into a newly allocated array, and returns a pointer to

the initial element of the new array:

char* duplicate_chars(const char* p) {

 // allocate enough space; remember to add one for the null

 size_t length = strlen(p) + 1;

 char* result = new char[length];

 // copy into our newly allocated space and return pointer to first element

 copy(p, p + length, result);

 return result;

}

Recall from §10.2/176 that strlen returns the number of characters in a null-terminated array,

excluding the null character at the end. We therefore add 1 to the result of strlen to account

for the null, and allocate that many characters. Because pointers are iterators, we can use the

copy algorithm to copy characters from the array denoted by p into the array denoted by

result. Because length includes the null character at the end of the array, the call to copy

copies that character as well as the ones before it.

As before, this function imposes on its caller the obligation to free the memory that it allocated.

In general, finding an opportune time to free dynamically allocated memory is far from easy.

We shall discuss techniques for automating this task in §11.3.4/200.

10.7 Details

Pointers are random-access iterators that hold the addresses of objects. For example:

p = &s Makes p point to s.

*p = s2 Dereferences p and assigns a new value to the object to which p points.

vector<string> (*sp)(const string&) = split;

Defines sp as a function pointer that points to the split function.

int nums[100];

Defines nums as an array of 100 ints.

int* bn = nums;

Defines bn as a pointer to the first element of the array nums.

int* en = nums + 100;

Defines en as a pointer to (one past) the last element of the array nums.

Pointers can point at single objects, arrays of objects, or functions. When a pointer refers to a

function, its value may be used only to call the function.

Arrays are fixed-size, built-in containers whose iterators are pointers. Uses of the name of an

array are automatically converted to a pointer to the initial element of the array. A string literal

is a null-terminated array of characters. Indexing an array is defined in terms of pointer

operations: For every array a and an index n, a[n] is the same as *(a + n). If a is an array with

n elements, then the range [a, a + n) represents all the elements of a. Arrays can be

initialized when they are defined:

string days[] = { "Mon", "Tues", "Wed", "Thu", "Fri", "Sat", "Sun" };

The implementation infers the size of days from the number of initializers.

The main function may (optionally) take two arguments. The first argument, an int, says how

many character arrays are stored in the second argument, which is a char**. The second

argument to main is sometimes written as

char* argv[]

which is equivalent to char**. This syntax is legal only in parameter lists.

Input-Output:

cerr

Standard error stream. Output is not buffered.

clog

Standard error intended for logging. Output is buffered.

ifstream(cp)

Input stream bound to the file named by the char* cp. Supports the operations on istreams.

ofstream (cp)

Output stream bound to the file named by the char* cp. Supports the operations on

ostreams.

Input and output file streams are defined in <ifstream>.

Memory management:

new T

Allocates and default-initializes a new object of type T and returns a pointer to the object.

new T(args)

Allocates and initializes a new object of type T using args to initialize the object. Returns a

pointer to the object.

delete p

Destroys the object to which p points and frees the memory used to hold *p. The pointer

must point at an object that was dynamically allocated.

new T[n]

Allocates and default-initializes an array of n new objects of type T. Returns a pointer to the

initial element in the array.

delete[] p

Destroys the objects in the array to which p points and frees the memory used to hold the

array. The pointer must point to the initial element of an array that was dynamically

allocated.

Exercises

10-0. Compile, execute, and test the programs in this chapter.

10-1. Rewrite the student-grading program from §9.6/166 to generate letter grades.

10-2. Rewrite the median function from §8.1.1/140 so that we can call it with either a vector or

a built-in array. The function should allow containers of any arithmetic type.

10-3. Write a test program to verify that the median function operates correctly. Ensure that

calling median does not change the order of the elements in the container.

10-4. Write a class that implements a list that holds strings.

10-5. Write a bidirectional iterator for your String_list class.

10-6. Test the class by rewriting the split function to put its output into a String_list.

11

Defining abstract data types

In Chapter 9, we learned something about the basic language features required to define new

types. However, the Student_info type that we defined in that chapter did not specify what

should happen when objects of type Student_info are copied, assigned, or destroyed. As

we'll see in this chapter, the class author also controls all these aspects of an object's

behavior. What may be surprising is how essential the correct definition of these operations is

for creating a type that is intuitive and easy to use.

Because we've used vectors extensively, we'll build a similar class to further our

understanding of how to design and implement classes. The implementation that we present

will be greatly simplified in terms of which operations we provide and our attention to

efficiency. Because it is a stripped-down version of the standard-library vector class, we'll call

our class Vec to avoid confusing it with the library class. Although we are largely concerned

with how to copy, assign, and destroy objects of class Vec, we will find it useful to start by

implementing some simpler member functions. Once we have completed these other

functions, we will come back and look at how we can control copying, assigning, and

destroying class objects.

11.1 The Vec class

When we design a class, we normally start by specifying the interface that we want to provide.

One way to determine the right interface is to look at the kind of programs we want our users

to be able to write. Because we want to implement a useful subset of the standard vector

class, a good place to start is to look at how we've used vectors:

// construct a vector

vector<Student_info> vs; // empty vector

vector<double> v(100); // vector with 100 elements

// obtain the names of the types used by the vector

vector<Student_info>::const_iterator b, e;

vector<Student_info>::size_type i = 0;

// use size and the index operator to look at each element in the vector

for (i = 0; i != vs.size(); ++i)

 cout << vs[i].name();

// return iterators positioned on the first and one past the last element

b = vs.begin(); e = vs.end();

Of course, this list of operations is but a subset of what the standard vector class

provides—but by implementing this subset, we can understand the language facilities

necessary to support much of the vector interface.

11.2 Implementing the Vec class

Having determined our operations, we next need to think about how to represent a Vec.

The easiest implementation decision is that we need to define a template class. We want to allow users to use Vecs to

hold a variety of types. The template facility that we described in §8.1.1/140 for functions also applies to classes. That facility

let us write one definition of a template function, and use that template to create versions that could be run on a variety of

types. Similarly, we can define a template class, and then use that class to create a family of types that differ only with

respect to the types used in the template parameter list. We've already used such types, including vector, list, and map.

As with template functions, when we define a template class, we have to signal that the class is a template, and list the type

parameters that will be used in the class definition:

template <class T> class Vec {

public:

 // interface

private:

 // implementation

};

This code says that Vec is a template class, with one type parameter named T. As with other class types, we can assume

that there will be public and private parts that define the interface and implementation respectively.

The next question we must resolve is what data we will store. Presumably we'll need some storage to hold the elements in

the Vec, and we'll want to keep track of the number of elements that the Vec contains. The most obvious choice is to hold

the elements in a dynamically allocated array.

What information about the array do we need to store? We intend to implement the begin, end, and size functions. This

intention suggests that we might store the address of the initial element, one past the address of the last element, and the

number of elements. However, we do not need to store all three of these items, because we can compute any of them from

the other two. Therefore, we'll make the arbitrary decision to store only pointers to the first and (one past) the last element of

the array, and to compute the size as needed. We envision a data structure that looks like this:

With these implementation decisions made, we can update our Vec class:

template <class T> class Vec {

public:

 // interface

private:

 T* data; // first element in the Vec

 T* limit; // one past the last element in the Vec

};

This class definition says that Vec is a template type, and that it takes a single type parameter. In the body of the class

definition, we'll call that type T. Whenever we use T, the compiler will replace it with whatever type the user names when

creating a Vec. So for example, if we write

Vec<int> v;

this definition will cause the compiler to instantiate (§8.1.2/142) a version of the Vec class in which it replaces each

reference to T by int. The code that the compiler generates for that class will resolve expressions that involve T as if they

had been written using int. Thus, because we used the type parameter T in the declaration of data and limit, the type of

these pointers depends on the type of the objects that the Vec will hold.

This type is not known until the definition of a Vec is instantiated. Once we say that we want a Vec<int>, the types of

data and limit are known: They will be int* for this instance of Vec. Similarly, if we also used Vec<string>, then the

compiler would generate a second, different instantiation of Vec that bound T to string, thereby giving data and limit the

type string* in that instantiation.

11.2.1 Memory allocation

Because our class will allocate its array dynamically (§10.6.2/184), we might expect that we should allocate space for our

Vec by using new T[n], where n is the number of elements we want to allocate. However, remember that not only does

new T[n] allocate space, but it also initializes the elements by running the default constructor for T. If we were to use new

T[n], then we would be imposing a requirement on T: Users could create a Vec<T> only if T has a default constructor.

The standard vector class imposes no such restriction. Because we want to emulate standard vectors, we don't want to

impose this restriction either.

It turns out that the library provides a memory allocation class that offers more detailed control over memory allocation. This

class will suit our needs exactly, if we use it instead of new and delete. The class lets us allocate raw memory, and

then—in a separate step—build objects in that memory. Rather than diving right into the details of that class, we will assume

that eventually we shall have to write some utility functions that will manage the memory for us. For now, we'll assume that

these functions exist, and we'll use them in completing the Vec class. As we use them, we'll get a better picture of just what

we would like them to do, so that when it's time to implement them, We will know just what it is that we need to implement.

These new utility members will be part of the private implementation of our class. They will be responsible for allocating and

deallocating the memory that we need, and for initializing and destroying the elements stored in the Vec. Thus, these

functions will manage our pointers—data and limit. Only these memory management functions will give new values to

these data members. The public members of Vec will read data and 1imit, but will not change them.

When the public members need to do something, such as constructing a new Vec that needs to change the value of data

or limit, they will call an appropriate memory- management function to do so. This strategy will let us partition our work: One

set of members will provide the interface to our user, and another set will deal with the implementation details.

We'll come back to fill in the details of these utility functions in §11.5/203.

11.2.2 Constructors

We know that we must define two constructors:

Vec<Student_info> vs; // the default constructor

Vec<double> vs(100); // constructor taking a size

The standard vector also provides a closely related third constructor, which takes a size and an initial value to use to

initialize the elements of the vector, and initializes all the elements to copies of that value. This constructor is similar to the

one that takes a size alone, so we may as well implement this third constructor too.

The role of any constructor is to ensure that the object is correctly initialized. For Vec objects, we need to initialize data and

limit. Doing so involves allocating space to hold the elements of the Vec and initializing those elements to an appropriate

value. In the case of the default constructor, we want to create an empty Vec, so we need not allocate any space. For the

constructors that take a size, we will allocate the given amount of storage. If the user gives us an initial value as well as a

size, we'll use that value to initialize all the elements that we allocated. If the user gives us just a size, then we'll use the

default constructor for T to obtain a value to use in initializing the elements. For now, we'll forward to our as yet unwritten

memory-management functions the job of initializing data and limit, and the related work of allocating and initializing the

elements:

template <class T> class Vec {

public:

 Vec() { create(); }

 explicit Vec(size_type n, const T& val = T()) { create(n, val); }

 // remaining interface

private:

 T* data;

 T* limit;

};

The default constructor, which is the one that takes no arguments, needs to indicate that the Vec is empty (i.e., that it has

no elements). It does so by calling a member called

create, that we'll have to write. When we return from create, we intend for both data and limit to be set to zero.

Our second constructor uses a keyword that we have not yet seen, explicit, which we will explain shortly. First, let's

understand what the constructor does. Note that it uses a default argument (§7.3/127) for the second parameter. Thus, the

constructor effectively defines two constructors: One takes a single argument of type size_type; the other takes a

size_type and a const T&. In both cases we call a version of create that takes a size and a value. We'll assume that

this function, which we'll write in §11.5/203, will allocate enough memory to hold n objects of type T, and will give those

elements the initial value specified by val. Our users will have supplied that value explicitly, or else the default constructor

for T will have generated it using the rules outlined in §9.5/164 for value-initialization.

Now let's understand a bit about the use of explicit. This keyword makes sense only in the definition of a constructor that

takes a single argument. When we say that a constructor is explicit, we're saying that the compiler will use the constructor

only in contexts in which the user expressly invokes the constructor, and not otherwise:

Vec<int> vi(100); // ok, explicitly construct the Vec from an int

Vec<int> vi = 100; // error: implicitly construct the Vec (§11.3.3/199) and copy it to vi

Use of explicit can be crucial in other contexts in which a constructor might be used, so we will discuss it further in

§12.2/213. For consistency with the standard vector class, we have made this constructor explicit even though none of our

subsequent examples in this chapter relies on this fact.

11.2.3 Type definitions

Following the convention used by the standard template classes, we want to provide type names that our users can use, and

that will hide the implementation details of how we implement our class. Specifically, we need to provide typedefs for the

const and nonconst iterator types, and for the type that we use to denote the size of a Vec.

It turns out that the library containers also define another type, named value_type, that is a synonym for type of the objects

that the container stores. Looking ahead, we will want to add push_back to class Vec, so that users can dynamically

grow their Vec objects. If we also define value_type, then users will be able to use back_inserter (which depends on

both push_back and value_type) to generate an output iterator that can grow the Vec.

The only hard part of defining these types is deciding what types to choose. As we've seen, iterators are objects that

navigate among the objects in a container and let us examine their values. Often iterators are themselves of class type. For

example, consider a class that implements a linked list. A logical strategy for such a class would be to model a list as a set of

nodes, where each node contains a value and a pointer to the next node in the list. The iterator for such a class would

contain a pointer to one of these nodes and would implement the ++ operator to follow the pointer to the next node in the

list. Such an iterator would have to be implemented as a class type.

Because we used an array to hold the elements of a Vec, we can use plain pointers as our Vec iterator type. Each such

pointer will point into the underlying data array. As we learned in §10.1/169, pointers support all the random-access-iterator

operations. By using a pointer as our underlying iterator type, we will provide full random-access properties, which is

consistent with the standard vector class.

What about the other types? The type of value_type is obvious: It must be T. But, what about the type that represents the

size? We know that size_t is big enough to hold the number of elements in any array. Because we are storing Vecs in an

array, we can use size_t as the underlying type for Vec::size_type. These decisions give us a class that now looks like

template <class T> class Vec {

public:

 typedef T* iterator; // added

 typedef const T* const_iterator; // added

 typedef size_t size_type; // added

 typedef T value_type; // added

 Vec() { create(); }

 explicit Vec(size_type n, const T& val = T()) { create(n, val); }

 // remaining interface

private:

 iterator data; // changed

 iterator limit; // changed

};

In addition to adding the appropriate typedefs, we've also updated the class to use our new types. By using the same

names inside the class that we defined with our typedef declarations, we make our code more readable and ensure the

code will not get out of sync if we subsequently change one of these types.

11.2.4 Index and size

We said that our users should be able to call size to find out how many elements are in the Vec and to use the index

operator to access the elements in the Vec. For example,

for (i = 0; i != vs.size(); ++i)

 cout << vs[i].name();

From this usage we can see that the size function should be a member of class Vec, and that we'll need to define what it

means to use the subscript operator, [], on a Vec. The size function is easiest: It takes no argument and should return the

number of elements in the Vec as a Vec::size_type. Before we define the index operation, we need to know a bit more

about how overloaded operators work.

We define an overloaded operator much as we define any other function: It has a name, takes arguments, and specifies a

return type.

We form the name of an overloaded operator by appending the operator symbol to the word operator. Thus, the function we

need to define will be called operator[].

The kind of operator—whether it is a unary or binary operator—is part of what determines how many parameters the

corresponding function has. It the operator is a function that is not a member, then the function has as many arguments as

the operator has operands. The first argument is bound to the left operand; the second is bound to the right operand. If the

operator is defined as a member function, then its left operand is implicitly bound to the object on which the operator is

invoked. Member operator functions, therefore, take one less argument than the operator indicates.

In general, operator functions may be member or nonmember functions. However, the index operator is one of a handful of

operations that must be member functions. When our user writes an expression such as vs[i], that expression will call the

member named operator[] of vs, passing i as its argument.

We know that the operand must be an integral type large enough to denote the last element in the largest possible Vec, and

that this type is Vec::size_type. What remains is to decide what type the index operator should return.

If we give it a bit of thought, we'll conclude that we should return a reference to the element stored in the Vec. Doing so will

allow users to write through the index as well as read from it. Although our sample program uses the index only to read a

value from vs, it is reasonable to expect that users will also want write access to the elements. With this analysis complete,

we can update our class appropriately:

template <class T> class Vec {

public:

 typedef T* iterator;

 typedef const T* const_iterator;

 typedef size_t size_type;

 typedef T value_type;

 Vec() { create(); }

 explicit Vec(size_type n, const T& val = T()) { create(n, val); }

 // new operations: size and index

 size_type size() const { return limit - data; }

 T& operator[](size_type i) { return data[i]; }

 const T& operator[](size_type i) const { return data[i]; }

private:

 iterator data;

 iterator limit;

};

The size function calculates the number of elements in the Vec by subtracting the pointers that delimit the array that holds

our values. Remember from §10.1.4/175 that subtracting two pointers yields the number of elements apart the locations are

to which the pointers refer (a value of type ptrdiff_t). Returning that value from the size function converts it to size_type,

the function's return type, which is a synonym for size_t (§10.1.3/174). Taking the size of a Vec doesn't change the Vec,

so we declare size as a const member function. Doing so lets us take the size of a const Vec.

The index operator finds the corresponding position in the underlying array and returns a reference to the element. By

returning a reference, we allow the user to use the index operation to change the values that are stored in the Vec. This

ability to write to the element implies that we need two versions: one for const Vec objects, the other for nonconst objects

of type Vec. Note that the const version returns a reference to const. Doing so ensures that users may use the index only

to read the Vec, not to write to it. It is worth noting that we still return a reference, rather than returning a value, for

consistency with the standard vector. The reason to return a reference is that if the objects stored in the container are

large, it is more efficient to avoid copying them.

It may be surprising that we can overload the index operator, because it appears that both argument lists are the same; each

appears to take a single parameter of type size_type. However, every member function, including each of these operators,

takes an implicit parameter, which is the object on which it operates. Because the operations differ regarding whether that

object is const, we can overload the operation.

11.2.5 Operations that return iterators

Next, we need to consider the functions that return iterators. Our specification called for us to implement the begin and

end operations, which return an iterator positioned at the beginning and one past the end of the Vec respectively:

template <class T> class Vec {

public:

 typedef T* iterator;

 typedef const T* const_iterator;

 typedef size_t size_type;

 typedef T value_type;

 Vec() { create(); }

 explicit Vec(size_type n, const T& val = T()) { create(n, val); }

 T& operator[](size_type i) { return data[i]; }

 const T& operator[](size_type i) const { return data[i]; }

 size_type size() const { return limit - data; }

 // new functions to return iterators

 iterator begin() { return data; } // added

 const_iterator begin() const { return data; } // added

 iterator end() { return limit; } // added

 const_iterator end() const { return limit; } // added

private:

 iterator data;

 iterator limit;

};

We offer two versions of the begin and end operations, which are overloaded based on whether the Vec is const. The

const versions return const_iterators, so our users will be able to read but not modify the Vec elements through the

iterator.

At this point, our Vec class is still pretty basic, but the essentials are in place. In fact, if we add only a few more operations,

such as push_back and clear, we could use this class instead of the standard vector for all the examples in this book.

Unfortunately, though, our Vec class fails to meet the vector specification in some critically important ways, which we must

now address.

11.3 Copy control

In the introduction to this chapter, we said that the class author controls what happens when objects are created, copied,

assigned, and destroyed. We've explained how to create objects, but not how to control what happens when they are copied,

assigned, or destroyed. As we'll see, if we fail to define these operations, the compiler will synthesize definitions for us.

These synthesized operations are sometimes exactly what we need. The rest of the time, the synthesized operations can

lead to counterintuitive behavior, and even to run-time failures.

C++ is the only language in widespread use that gives the programmer this level of control over an object's behavior. Not

surprisingly, getting these operations correct is essential in building useful data types.

11.3.1 Copy constructor

Passing an object by value to a function, or returning an object by value from a function, implicitly copies the object. For

example,

vector<int> vi;

double d;

d = median(vi); // copy vi into the parameter in median

string line;

vector<string> words = split(line); // copy the return from split into words

Similarly, we can explicitly copy an object by using it to initialize another object:

vector<Student_info> vs;

vector<Student_info> v2 = vs; // copy vs into v2

Both explicit and implicit copies are controlled by a special constructor called the copy constructor. Like other constructors,

the copy constructor is a member function with the same name as the name of the class. Because it exists to initialize a new

object as a copy of an existing object of the same type, it follows that the copy constructor takes a single argument that has

the same type as the class itself. Because we are defining what it means to make a copy, including making copies of

function arguments, this is one case when it is essential that the parameter be a reference type! Furthermore, copying an

object should not change the object being copied from, so the constructor takes a const reference to the object from which

to copy:

template <class T> class Vec {

public:

 Vec (const Vec& v); // copy constructor

 // as before

};

Having declared the copy constructor, we have to figure out what it should do. In general, copy constructors "copy" each

data element from an existing object into the new object. We say "copy" because sometimes copying involves more than just

copying the contents of a data element. For example, in our Vec class, we have two data elements, both of which are

pointers. If we copy the values of the pointers, then the original and the copy will both point to the same underlying data. For

example, assume that v is a Vec, and that we want to copy v into v2. If we copied the pointers, then what we'd have is

Clearly, any change made to an element of one "copy" would result in changing the value of the element of the other "copy"

as well. That is, if we assigned a value to v[0], doing so would also change v2[0]. Is this behavior what we want?

As with other operations, we can answer this question by seeing what the standard vector does. Recall the discussion in

§4.1.1/53, in which we noted that we needed to pass the vector to the median function by value so that the vector would

be copied. Making a copy ensured that changes made inside median would not propagate out of the function. This

analysis, and the behavior that we observe when we run the median function, indicates that the standard vector class

does not share the same underlying storage once a copy is made. Instead, it arranges that each copy of a vector is

independent, so that changes to one are not reflected in the other:

Evidently, when we copy a Vec, we'll need to allocate new space and copy the contents from the source into the newly

allocated destination. As before, we'll assume that one of our utility functions will handle the allocation and copy so that the

copy constructor can forward its work to that function:

template <class T> class Vec {

public:

 Vec(const Vec& v) { create(v.begin(), v.end()); }

 // as before

};

When we get around to writing it, the function will be yet another version of create— this one taking a pair of iterators (i.e.,

pointers) and initializing the elements being created from the elements in the range bounded by those pointers.

11.3.2 Assignment

Just as a class definition specifies what happens when objects of that class are copied, the class definition also controls the

behavior of the assignment operator. Although a class may define several instances of the assignment

operator—overloaded, as usual, by differing types for its argument—the version that takes a const reference to the class

itself is special: It defines what it means to assign one value of the class type to another. This version is typically called "the

assignment operator," even if the class defines several other versions of the operator= function. The assignment operator,

like the index operator, must be a member of the class. As with any other operator, the assignment operator has a return

value, and so it must define a return type. For consistency with the built-in assignment operators, we return a reference to

the left-hand side:

template <class T> class Vec {

public:

 Vec& operator=(const Vec&);

 // as before

};

Assignment differs from the copy constructor in that assignment always involves obliterating an existing value (the left-hand

side) and replacing it with a new value (the right- hand side). When we make a copy, we are creating a new object for the

first time, so there is no preexisting object to deallocate. Like the copy constructor, assignment usually involves assigning

each of the data values. Data members that are pointers present the same issues for assignment as they did for copying.

We'll want assignment to ensure that each object has its own copy of the data from the right-hand side.

There's one last detail to consider before writing the code, and that is self-assignment. It is possible that a user might wind

up assigning an object to itself. As we shall see, it is crucial that assignment operators deal correctly with self-assignment:

template <class T>

Vec<T>& Vec<T>::operator=(const Vec& rhs)

{

 // check for self-assignment

 if (&rhs != this) {

 // free the array in the left-hand side

 uncreate();

 // copy elements from the right-hand to the left-hand side

 create(rhs.begin(), rhs.end());

 }

 return *this;

}

This function uses a couple of new concepts, which we'll need to explain.

First is the syntax that we use to define a template member function outside the class header. As with any template, we

begin by signaling to the compiler that we are defining a template, and naming the template parameters. Next comes the

return type, which in this case is Vec<T>&. If we compare this definition with the corresponding declaration in the header

file, we'll see that we said the function returned a Vec&. We did not explicitly name the type parameter in the return type. As

a bit of syntactic sugar, the language allows us to omit the type parameters when we are within the scope of the template.

Thus, inside the header file, we need not repeat <T> because the template parameter is implicit. When we name the return

type, we are outside the scope of the class, so we must explicitly state the template parameters, if any. Similarly, the name

of the function is Vec<T>::operator=, not simply Vec::operator=. However, once we have specified that it is a

member of Vec<T> that we are defining, we need no longer repeat the template qualifiers. Hence, the argument is simply

const Vec&, although we could have written the redundant const Vec<T>&.

The other new aspect of this function is the use of a new keyword, this. The this keyword is valid only inside a member

function, where it denotes a pointer to the object on which the member function is operating. For example, inside

Vec::operator=, the type of this is Vec*, because this is a pointer to the Vec object of which operator= is a member.

For a binary operator, such as assignment, this is bound to the left-hand operand. Ordinarily, this is used when we need to

refer to the object itself, as we do here both in the initial if test and in the return.

We use this to determine whether the right- and left-hand sides of the assignment refer to the same object. If they do, then

they will have the same address. As we saw in §10.1.1/170, &rhs yields a pointer that is the address of rhs. We explicitly

test for self-assignment by comparing that pointer and this, which points to the left-hand side. If the objects are the same,

then there's nothing to do in the assignment operator, and we immediately fall through to the return statement. If the objects

are different, we need to free the old space and assign new values to each data element, copying the contents from the

right-hand side to the newly allocated array. Evidently, we will need to write another of our utility functions, uncreate, which

will destroy the elements that had been in this Vec, and will free the storage that it had consumed. Once we call uncreate

to obliterate the old values, we can use the version of create that copies from an existing Vec to allocate new space and

copy the values from the right-hand to the left-hand side.

It is crucially important that assignment operators correctly handle self-assignment, which we did here by explicitly checking

whether the left- and right-hand operands are the same object. To see the importance, consider what would happen if we

were to remove this test from our assignment operator. In that case, we would always uncreate the existing array from the

left-hand operand, destroying the elements and returning the space that had been used. However, if the two operands were

the same object, then the right operand would refer to this same space. Had we used the elements from the right operand to

create a new array for the left operand, the result would have been a disaster: When we freed the space held by the left

operand, we would also have freed the space for the right-hand object. When create attempted to copy the elements from

rhs, those elements would have been destroyed and the memory returned to the system.

Although it is most common to handle self-assignment through a direct check, such as we did here, it is not universal, nor is

it always the best approach. The important point is to handle self-assignment correctly. How to do so is a matter of tactics.

The last interesting bit is the return statement, which dereferences this to obtain the object to which it points. We then

return a reference to that object. As usual in returning a reference, it is crucial that the object to which the reference refers

persist after the function has returned. Returning a reference to a local object ensures disaster: The referenced object will

have gone away when the function returns, resulting in a reference to garbage.

In the case of the assignment operator, we are returning a reference to the object that is the left-hand side of the expression.

That object exists outside the scope of the assignment operator and hence is guaranteed to be around even after the

function returns.

11.3.3 Assignment is not initialization

Experience leads us to believe that the difference between assignment and initialization is one of the trickier aspects of

learning C++ well. Many programming languages, C notably among them, do not expose the distinction, so programmers

often are unaware of the difference. The fact that the = symbol can be involved in both initialization and assignment can

make the distinction harder to grasp. When we use = to give an initial value to a variable, we are invoking the copy

constructor. When we use it in an assignment expression, we're calling operator=. Class authors must be attuned to the

difference in order to implement the right semantics.

The key difference stems from two observations: Assignment (operator=) always obliterates a previous value; initialization

never does so. Rather, initialization involves creating a new object and giving it a value at the same time. Initialization

happens

In variable declarations

For function parameters on entry to a function

For the return value of a function on return from the function

In constructor initializers

Assignment happens only when using the = operator in an expression. For example:

string url_ch = "~;/?:@=&$-_.+!*'()," // initialization

string spaces(url_ch.size(), ' ') ; // initialization

string y; // initialization

y = url_ch; // assignment

The first declaration creates a new object. Therefore, we know that we are initializing that object, and hence that we will be

invoking a constructor. The syntax

string url_ch = "~;/?:@=&$-_.+!*'(),"

says to create a string from the const char* that represents the string literal "~;/?:@=&$-_.+!*'(),". To do so, the

compiler will call the string constructor that takes a const char*. That constructor can construct url_ch directly from the

string literal, or it can construct an unnamed temporary variable from the string literal, and then call the copy constructor to

construct url_ch as a copy of that temporary variable.

The second declaration shows another form of initialization: giving one or more constructor arguments directly. The compiler

will call whichever constructor is most appropriate for the number of arguments and their types. In this example, it will use

the string constructor that takes two arguments. The first argument says how many characters the variable spaces is to

have; the second tells what value to give each of those characters. The effect will be to define spaces as having the same

number of characters as url_ch, with all of the characters being blank.

The third declaration is easier: We're invoking the default constructor to create an empty string. The last statement is not a

declaration at all. Instead, it is using the = operator as part of an expression; hence, it is an assignment. That assignment

will be accomplished by running the string assignment operator.

A slightly more complicated example involves function arguments and return values. For example, assume that line holds a

line of input, and we call split from §6.1.1/103:

vector<string> split(const string&); // function declaration

vector<string> v; // initialization

v = split(line); // on entry, initialization of split's parameter from line;

 // on exit, both initialization of the return value

 // and assignment to v

The declaration of split is interesting because it defines a return type that is a class type. Assigning a class type return

value from a function is a two-step process: First, the copy constructor is run to copy the return value into a temporary at the

call site. Then the assignment operator is run to assign the value of that temporary to the left-hand operand. The distinction

between initialization and assignment is important because each one causes different operations to run:

Constructors always control initialization.

The operator= member function always controls assignment.

11.3.4 Destructor

We must still provide one more operation, which defines what happens when a Vec object is destroyed. An object that is

created in a local scope is destroyed as soon as it goes out of scope; a dynamically allocated object is destroyed when we

delete a pointer to the object. For example, consider the split function from §6.1.1/103:

vector<string> split(const string& str) {

 vector<string> ret;

 // split str into words and store in ret

 return ret;

}

When we return from split, the local variable ret goes out of scope and is destroyed.

Just as with copy and assignment, it is up to the class to say what happens when objects are destroyed. Like constructors,

which say how to create objects, there is a special member function, called a destructor, that controls what happens when

objects of the type are destroyed. Destructors have the same name as the name of the class prefixed by a tilde(~).

Destructors take no arguments and have no return value.

The work of the destructor is to do any cleanup that should be done whenever an object goes away. Typically, this cleanup

involves releasing resources, such as memory, that the constructor has allocated:

template <class T> class Vec {

public:

 ~Vec() { uncreate(); }

 // as before

};

For Vecs, we allocate memory in the constructors, and so we must free it in the destructor. This job is similar to what the

assignment operator does to obliterate the old left-hand side. Not surprisingly, we can call the same utility function from the

destructor, with the aim of destroying the elements and freeing the space that they occupied.

11.3.5 Default operations

Some classes, such as the Student_info types that we defined in Chapters 4 and 9, do not explicitly define a copy

constructor, assignment operator, or destructor. A logical question is: What happens when objects of such types are created,

copied, assigned, and destroyed? The answer is that if the class author does not specify these operations, the compiler

synthesizes default versions of the unspecified operations.

The default versions are defined to operate recursively—copying, assigning, or destroying each data element according to

the appropriate rules for the type of that element. Members that are of class type are copied, assigned, or destroyed by

calling the copy constructor, assignment operator, or destructor for the data element. Members that are of built-in type are

copied or assigned by copying or assigning their value. The destructor for built-in types has no work to do—even if the type

is a pointer. In particular, destroying a pointer through the default destructor does not free the space at which the pointer

points.

Now we can understand how the default Student_info operations execute. For example, the copy constructor copies four

data elements. To do so, it invokes the string and vector copy constructors to copy the name and homework members

respectively. It copies the two double values, midterm and final, directly.

Finally, as we saw in §9.5/164, there is a default for the default constructor. If the class defines no constructors at all, then

the compiler will synthesize the default constructor, which is the constructor that has no parameters. The synthesized default

constructor recursively initializes each data member in the same way as the object itself is initialized: If the context requires

default-initialization, it will default-initialize the data members; if the context requires value-initialization, it will value-initialize

the data members.

It is important to note that if a class defines any constructor explicitly, even a copy constructor, then the compiler will not

synthesize a default constructor for that class. Default constructors are essential in several contexts: One such context is in

the synthesized default constructor itself. In order to be used as a data member of a class that relies on the synthesized

default constructor, the data type must itself provide a default constructor. Therefore, it is usually a good idea to give a class

a default constructor, either explicitly, as we did in Chapter 9, or implicitly, as we did in Chapter 4.

11.3.6 The rule of three

Classes that manage resources such as memory require close attention to copy control. In general, the default operations

will not suffice for such classes. Failure to control every copy can confuse users of the class and often will lead to run-time

errors.

Consider our Vec class, but pretend that we did not define the copy constructor, assignment operator, or destructor. As we

saw in §11.3.1/195, at best we will surprise our users. Users of Vec will almost surely expect that once they've copied one

Vec into another, the two objects will be distinct. They will expect that operations on one Vec will not have any effect on the

data held by the other.

Even worse, though, is that if we do not define a destructor, then the default destructor will be used. That destructor will

destroy the pointer, but destroying a pointer does not free the space to which it points. The result will be a memory leak: The

space consumed by Vecs will never be reclaimed.

If we fix the leak by providing a destructor, but we do not also add the copy constructor and assignment operator, then we

set things up so that a crash is likely. In such a flawed implementation, it would be possible for two Vecs to share the same

underlying storage, as we illustrated in the first diagram in §11.3.1/196. When one of those objects is destroyed, the

destructor will destroy that shared storage. Any subsequent reference through the undestroyed copy will lead to disaster.

Classes that allocate resources in their constructors require that every copy deal correctly with those resources. Such

classes almost surely need a destructor to free the resources. If the class needs a destructor, it almost surely needs a copy

constructor, as well as an assignment operator. Copying or assigning objects of classes that allocate resources usually

allocates those resources in the same way that creating an object from scratch does. To control every copy of objects of

class T, you need

T::T(); one or more constructors, perhaps with arguments

T::~T() the destructor

T::T(const T&) the copy constructor

T::operator=(const T&) the assignment operator

Once we have defined these operations, the compiler will invoke them whenever an object of our type is created, copied,

assigned, or destroyed. Remember that objects may be created, copied, or destroyed implicitly. Whether implicitly or

explicitly, the compiler will invoke the appropriate operation.

Because the copy constructor, destructor, and assignment operator are so tightly coupled, the relationship among them has

become known as the rule of three: If your class needs a destructor, it probably needs a copy constructor and an

assignment operator too.

11.4 Dynamic Vecs

Before we implement our memory management functions, we should realize that our Vecs are inferior to standard vectors

in an important way: We do not provide a push_back operation, and so our Vecs are of fixed size. Remember that

push_back pushes its argument onto the back of the vector and, in the process, increases the size of the vector by one

element.

We could add a push_back function that allocated new space to hold one more element than the current Vec holds. We'd

have to copy the existing elements into this new space, constructing a new last element from the argument to push_back.

We can see that this strategy would be expensive if our users made many calls to push_back.

There is a classic approach to solving a problem such as this one: Allocate more storage than we need. Only when we

exhaust the preallocated storage will we go back for more. For simplicity, whenever push_back needs to get more space,

we'll allocate twice as much storage as we currently use. So, if we create a Vec with 100 elements, and then call

push_back for the first time, it will allocate enough space to hold 200 elements. It will copy the existing 100 elements into

the first half of the newly allocated space and construct a new, last element at the end of that sequence. The next 99 calls to

push_back will be satisfied without having to go back for more memory.

This strategy implies that we'll need to change how we keep track of the array that holds our elements. We'll still need to

keep track of the first element, but now we'll need two "end" pointers. One will point (one past) the last constructed element,

which, equivalently, is a pointer to the first available element. The other pointer will point (one past) the last allocated

element. So, our Vec objects will now look like

Fortunately, only push_back and our memory management functions, which we have not yet written, will need to know

about this new member. Moreover, push_back itself is pretty simple; it forwards the hard work to two of our

memory-management functions, named grow and unchecked_append, which we shall eventually have to write.

template <class T> class Vec {

public:

 void push_back(const T& val) {

 if (avail == limit) // get space if needed

 grow();

 unchecked_append(val) ; // append the new element

 }

private:

 iterator data; // as before, pointer to the first element in the Vec

 iterator avail; // pointer to (one past) the last constructed element

 iterator limit; // now points to (one past) the last available element

 // rest of the class interface and implementation as before

};

11.5 Flexible memory management

When we wrote our Vec class, we noted that we did not want to use the built-in new and

delete operations to manage our memory. The reason is that if we relied on these operations,

our Vec would be more restrictive than the standard vector. The new operator does too much

for our purposes: It both allocates and initializes memory. When used to allocate an array of

type T, it needs the default constructor for T. This approach prevents us from offering our

users as much flexibility as we would like to offer.

Using new would also be unduly expensive. If we use new, it always initializes every element

of a T array by using T::T(). If we wanted to initialize the Vec elements ourselves, we would

have to initialize each element twice—once by new, and again to install the value that our

user supplied. Even worse, consider the allocation strategy that we propose to use for

push_back. This strategy implies that we'll double the size of the Vec each time we need to

get more storage. We have no reason to want the extra elements initialized. They'll be used

only by push_back, which will use the space only when we have a new element to construct

in that space. If we used new to allocate the underlying array, these elements would be

initialized regardless of whether we ever use them.

Instead of using the built-in new and delete operators, we can do better by using

standard-library facilities designed to support flexible memory management. The core

language itself does not have any notion of memory allocation, because the properties of

memory are too variable to wire into the language itself.

For example, modern computers have many kinds of memory. There may be many different

speeds of memory on the machine. There may be memory with special properties, such as

graphical buffers or shared memory. There may be memory that is persistent across power

failures. Because users might want to allocate any of these (or other) kinds of memory, it is

best left to the library to specify how we allocate and manage memory. The standard library

isn't required to support all these kinds of memory either. However, by offering a library facility

to manage memory, the standard also offers a uniform interface to memory managers, even if

those managers themselves are tied to specific implementations. As with the decision to make

input-output a library rather than a language facility, the decision to make memory

management part of the library gives us greater flexibility in using these different kinds of

memory.

The <memory> header provides a class, called allocator<T>, that allocates a block of

uninitialized memory that is intended to contain objects of type T, and returns a pointer to the

initial element of that memory. Such pointers are dangerous, because their type suggests that

they point to objects, but the memory doesn't really contain those objects yet. The library also

provides a way to construct objects in that memory, and to destroy the objects again—all

without deallocating the memory itself. It is up to the programmer using the allocator class to

keep track of which space holds constructed objects and which space is still uninitialized.

The interesting part of the allocator class, for our purposes, comprises four member functions

and two associated nonmember functions:

template<class T> class allocator {

public:

 T* allocate(size_t);

 void deallocate(T*, size_t);

 void construct(T*, const T&) ;

 void destroy(T*);

 // ...

};

template<class Out, class T> void uninitialized_fill(Out, Out, const T&);

template<class In, class Out> Out uninitialized_copy(In, In, Out);

The allocate member allocates typed but uninitialized storage sufficient to hold the requested

number of elements. By typed storage, we mean that it will be used to hold values of type T,

and that we will use pointers of type T* to address it. By uninitialized storage, we mean that

the memory is raw storage, and no objects have yet been constructed in it. The deallocate

member frees this uninitialized storage. It takes a pointer to storage that was allocated by

allocate, and a size that indicates how many elements were allocated. The construct and

destroy members construct or destroy a single object in this uninitialized space. We call

construct, passing it a pointer into space that was allocated by allocate, and a value to copy

into that space. The destroy function runs the destructor for T on the element indicated by its

argument.

The two companion functions that we need are named uninitialized_copy and

uninitialized_fill. These functions initialize elements in space that is allocated by allocate. The

uninitialized_fill function fills this uninitialized space with the specified value. When the

function completes, each of the elements in the range specified by the first two arguments will

be a newly constructed copy of the value specified in the third argument. The

uninitialized_copy function operates like the library copy function, in that it copies values

from a sequence specified by its first two arguments into a target sequence denoted by its

third argument. Like uninitialized_fill, it assumes that the target range contains raw storage,

rather than elements that already hold values, and it constructs new objects in that memory.

As with any template, the actual type bound to T will be instantiated at compile time. This

instantiation will generate an appropriate allocator class for each type that uses the class. In

order to obtain an allocator of the right type, we'll add to our Vec<T> class an allocator<T>

member that will know how to allocate objects of type T. By adding this member, and using its

associated library functions, we can provide the same kind of efficient, flexible memory

management as the standard vector class provides.

11.5.1 The final Vec class

Our complete Vec class, including declarations but not definitions for the memory

management functions, now looks like

template <class T> class Vec {

public:

 typedef T* iterator;

 typedef const T* const_iterator;

 typedef size_t size_type;

 typedef T value_type;

 Vec() { create(); }

 explicit Vec(size_type n, const T& t = T()) { create(n, t); }

 Vec(const Vec& v) { create(v.begin(), v.end()); }

 Vec& operator=(const Vec&); // as defined in §11.3.2/196

 ~Vec() { uncreate(); }

 T& operator[](size_type i) { return data[i]; }

 const T& operator[](size_type i) const { return data[i]; }

 void push_back(const T& t) {

 if (avail == limit)

 grow();

 unchecked_append(t);

 }

 size_type size() const { return avail - data; }

 iterator begin() { return data; }

 const_iterator begin() const { return data; }

 iterator end() { return avail; }

 const_iterator end() const { return avail; }

private:

 iterator data; // first element in the Vec

 iterator avail; // (one past) the last element in the Vec

 iterator limit; // (one past) the allocated memory

 // facilities for memory allocation

 allocator<T> alloc; // object to handle memory allocation

 // allocate and initialize the underlying array

 void create() ;

 void create(size_type, const T&);

 void create(const_iterator, const_iterator);

 // destroy the elements in the array and free the memory

 void uncreate();

 // support functions for push_back

 void grow();

 void unchecked_append(const T&);

};

All that remains is to implement the private members that handle memory allocation. As we

write these members, our program will be easier to understand if we remember that whenever

we have a valid Vec object, four things are always true:

data points at our initial data element, if we have any, and is zero otherwise.1.

data <= avail <= limit.2.

Elements have been constructed in the range [data, avail).3.

Elements have not been constructed in the range [avail, limit).4.

We shall call these conditions the class invariant. Much as we did with loop invariants in

§2.3.2/20, we intend to establish the class invariant as soon as we construct an object of that

class. If we do so, and we ensure that none of our member functions falsifies the class

invariant, we can be assured that the invariant will always be true.

Note that none of the public members is capable of falsifying the invariant, because the only

way to do so would be to change the value of data, avail, or limit, and none of those member

functions does so.

We shall begin by looking at the various create functions, which are responsible for allocating

memory, initializing elements in that memory, and setting the pointers appropriately. In each

case, we initialize whatever memory is allocated and so, after running create, the pointers

limit and avail are always equal: The last constructed element is the same as the last

allocated element. You should verify for yourself that the class invariant is true after we have

executed any of the following functions:

template <class T> void Vec<T>::create()

{

 data = avail = limit = 0;

}

template <class T> void Vec<T>::create(size_type n, const T& val)

{

 data = alloc.allocate(n);

 limit = avail = data + n;

 uninitialized_fill(data, limit, val);

}

template <class T>

void Vec<T>::create(const_iterator i, const_iterator j)

{

 data = alloc.allocate(j - i);

 limit = avail = uninitialized_copy(i, j, data);

}

The version of create that takes no arguments creates an empty Vec, so its job is to ensure

that the pointers start out with zero values.

The version that takes a size and a value uses the size to allocate the appropriate amount of

memory. The allocate member of class allocator<T> allocates enough memory to hold the

specified number of objects of type T. Thus, alloc.allocate(n) allocates enough space to hold

n objects. The allocate function returns a pointer to the initial element, which we store in data.

The memory returned by allocate is uninitialized, so we arrange to initialize it by calling

uninitialized_fill, which copies its third argument into the sequence of uninitialized elements

specified by its first two arguments. When the function completes, it will have constructed new

elements in the space obtained by allocate and will have initialized each of these elements to

val.

The final version of create operates similarly to the other two, except that it calls

uninitialized_copy to initialize the space obtained from allocate. That function copies

elements from the sequence denoted by its first two arguments into a target sequence of

uninitialized elements denoted by its third argument. It returns a pointer to (one past) the last

element that it initialized, which is exactly the value that we need for limit and avail.

The uncreate member has to undo what the create members did: It must run the destructors

on the elements, and return the space that the Vec used:

template <class T> void Vec<T>::uncreate()

{

 if (data) {

 // destroy (in reverse order) the elements that were constructed

 iterator it = avail;

 while (it != data)

 alloc.destroy(--it);

 // return all the space that was allocated

 alloc.deallocate(data, limit - data);

 }

 // reset pointers to indicate that the Vec is empty again

 data = limit = avail = 0;

}

If data is zero, there's no work to do. If we were using delete, we might not bother to compare

data to zero, knowing that executing delete on a zero pointer is harmless. However, unlike

delete, the alloc.deallocate function requires a nonzero pointer, even if no memory is being

freed. Therefore, we must check whether data is zero.

If we have work to do, we march the iterator it through the constructed elements of the Vec,

calling destroy to destroy each element. We go backward through the Vec to match the

behavior of delete[], which destroys elements in reverse order. Once we've destroyed the

elements, we free all the space in the call to deallocate. This function takes a pointer to the

first element of the memory to free, and an integral value that indicates how many elements of

type T are to be freed. Because we want to return all the space that was allocated, we

deallocate the space between data and limit.

What's left is to implement the members used by push_back:

template <class T> void Vec<T>::grow()

{

 // when growing, allocate twice as much space as currently in use

 size_type new_size = max(2 * (limit - data), ptrdiff_t(1));

 // allocate new space and copy existing elements to the new space

 iterator new_data = alloc.allocate(new_size);

 iterator new_avail = uninitialized_copy(data, avail, new_data);

 // return the old space

 uncreate();

 // reset pointers to point to the newly allocated space

 data = new_data;

 avail = new_avail;

 limit = data + new_size;

}

// assumes avail points at allocated, but uninitialized space

template <class T> void Vec<T>::unchecked_append(const T& val)

{

 alloc.construct(avail++, val);

}

The job of grow is to allocate enough space to hold at least another element. It allocates

more than it needs, so that subsequent calls to push_back can use the excess, avoiding the

overhead of frequent memory allocations. In §11.4/202, we said that our strategy would be to

double the amount of space for each new allocation. Of course, the Vec might currently be

empty, so we cater to this possibility by allocating the max of one element and twice the

existing space. Remembering from §8.1.3/142 that the two arguments to max must have

exactly the same type, we explicitly construct an object with value 1 of type ptrdiff_t, which we

know from §10.1.4/175 is the type of limit - data.

We start by remembering in new_size how many elements we will allocate. We allocate the

appropriate space, and then call uninitialized_copy to copy the elements from the current

space into the newly allocated space. We then return the old memory, and destroy the

elements there by calling uncreate. Finally, we reset the pointers so that data points to the

first element in the newly allocated array, limit points to (one past) the last constructed

element in the Vec, and avail points to (one past) the last allocated but as yet uninitialized

element.

Note that it is essential that we save the values returned by allocate and uninitialized_copy.

The reason is that if we used those values immediately to reset data and limit, then the

subsequent calls to uncreate would destroy and free the memory that we just allocated,

rather than getting rid of the old space!

The unchecked_append function builds an element in the first location after the constructed

elements. It assumes that avail points at space that was allocated, but has not yet been used

to hold a constructed element. Because we call unchecked_append only immediately after a

previous call to grow, we know that this call is safe.

11.6 Details

Template classes can be formed using the template facility described in §8.1.1/140:

template <class type-parameter [, class type-parameter]... >

class class-name { ... } ;

creates a template class named class-name that depends on the given type parameters.

These type-parameter names may be used inside the template wherever a type is required. In

the scope of the class, the template class may be referred to without qualification; outside the

class scope, class-name must be qualified with the type parameters:

template <class T>

Vec<T>& Vec<T>::operator=(const Vec&) { ... }

Users specify the actual types when creating objects of template types: Vec<int> causes the

implementation to instantiate a version of Vec binding the type parameter to int.

Copy control: In general, classes control what happens when objects are created, copied,

assigned, or destroyed. Constructors are invoked as a side effect of creating or copying

objects; the assignment operator is invoked in expressions involving assignment; and the

destructor is run automatically when objects are destroyed or go out of scope.

Classes that allocate resources in a constructor almost invariably must define the copy

constructor, the assignment operator, and the destructor. When we write an assignment

operator, it is essential for us to check for self-assignment. For consistency with the built-in

assignment operators, it is good practice to return a reference to the left-hand operand.

Synthesized operations: If a class defines no constructors, the compiler will synthesize the

default constructor. If the class does not explicitly define them, the compiler will synthesize the

copy constructor, assignment operator, and/or destructor. The synthesized operations are

defined recursively: Each synthesized operator recursively applies the appropriate operation

for the data members of the class.

Overloaded operators are defined by defining a function named operator op, where op is

the operator being defined. At least one parameter must be of class type. When an operator

function is a member of a class, its left-hand operand (if it is a binary operator) or its only

operand (if it is a unary operator) is bound to the object on which it is invoked. The index

operator and the assignment operator must be class members.

Exercises

11-0. Compile, execute, and test the programs in this chapter.

11-1. The Student_info structure that we defined in Chapter 9 did not define a copy

constructor, assignment operator, or destructor. Why not?

11-2. That structure did define a default constructor. Why?

11-3. What does the synthesized assignment operator for Student_info objects do?

11-4. How many members does the synthesized Student_info destructor destroy?

11-5. Instrument the Student_info class to count how often objects are created, copied,

assigned, and destroyed. Use this instrumented class to execute the student record programs

from Chapter 6. Using the instrumented Student_info class will let you see how many copies

the library algorithms are doing. Comparing the number of copies will let you estimate what

proportion of the cost differences we saw are accounted for by the use of each library class.

Do this instrumentation and analysis.

11-6. Add an operation to remove an element from a Vec and another to empty the entire

Vec. These should behave analogously to the erase and clear operations on vectors.

11-7. Once you've added erase and clear to Vec, you can use that class instead of vector in

most of the earlier programs in this book. Rewrite the Student_info programs from Chapter 9

and the programs that work with character pictures from Chapter 5 to use Vecs instead of

vectors.

11-8. Write a simplified version of the standard list class and its associated iterator.

11-9. The grow function in §11.5.1/208 doubles the amount of memory each time it needs

more. Estimate the efficiency gains of this strategy. Once you've predicted how much of a

difference it makes, change the grow function appropriately and measure the difference.

12

Making class objects act like values

Objects of built-in types generally behave like values: Whenever we copy an object of such a

type, the original and the copy have the same value but are otherwise independent.

Subsequent changes to one object do not affect the other. We can create objects of these

types, pass them to and from functions, copy them, or assign them to other objects.

For most of the built-in types, the language also defines a rich set of operators and provides

automatic conversions between logically similar types. For example, if we add an int and a

double, the compiler automatically converts the int into a double.

When we define our own classes, we control the extent to which the resulting objects behave

like values. We saw in Chapters 9 and 11 that the class author controls what happens when

objects are created, copied, assigned, and destroyed. By defining copying and assignment

appropriately, the class author can arrange for objects of that class to act like values. That is,

the class author can arrange for each object to have state that is independent of any other

object. Our Vec and Student_info classes are examples of types that act like values.

In this chapter, we shall see that the class author can also control conversions and related

operations on class objects, thereby providing classes whose objects behave even more

similarly to objects of built-in types. The standard-library string class is a good example of

such a type because of its rich set of operators and support for automatic conversions.

Accordingly, in this chapter, we will define a simplified version of string, called Str, much as

we defined a simplified version of vector in Chapter 11. We will focus on the operators and

conversions that let us write expressions involving strings. In this chapter, we will not concern

ourselves with efficiency. Instead, in Chapter 14, we will revisit Str to understand techniques

for managing more efficiently the storage associated with each Str object.

We do not need to worry much about the implementation details of our Str class, because we

did most of the work already when we implemented the Vec class. Accordingly, most of the

discussion in this chapter will revolve around how to design an appropriate interface to our

class.

12.1 A simple string class

Let's start by defining a Str class that lets us create objects that behave approximately as we

would like:

class Str {

public:

 typedef Vec<char>::size_type size_type;

 // default constructor; create an empty Str

 Str() { }

 // create a Str containing n copies of c

 Str(size_type n, char c): data(n, c) { }

 // create a Str from a null-terminated array of char

 Str(const char* cp) {

 std::copy(cp, cp + std::strlen(cp), std::back_inserter(data));

 }

 // create a Str from the range denoted by iterators b and e

 template<class In> Str(In b, In e) {

 std::copy(b, e, std::back_inserter(data));

 }

private:

 Vec<char> data;

};

Our class delegates the work of managing its data to the Vec class that we wrote in Chapter

11. That class is almost good enough to support our Str; it lacks only the clear function that

Chapter 11 had left as an exercise.

The Str class has four constructors, each of which arranges to create data as an appropriately

initialized Vec object.

The default constructor for Str implicitly invokes the Vec default constructor to create an

empty Str. Note that because our class has other constructors, we must explicitly define the

default constructor, even though it does exactly what the synthesized default constructor

would have done. The other three constructors take values, which we use to construct or

initialize data.

The constructor that takes a size and a character uses the corresponding Vec constructor to

construct data. It has no further work to do, so the constructor body is empty.

The last two constructors are similar to each other. Their constructor initializers are empty,

which means that data is implicitly initialized as an empty Vec. Each constructor asks copy to

append the supplied characters to the initially empty data. For example, the constructor that

takes a const char* uses strlen to determine the length of the string. From this length, it

computes two iterators that denote the input characters, and asks copy and back_inserter to

append those characters to data. Thus, the constructor will cause data to contain copies of

the characters in the array denoted by cp.

The most interesting constructor is the final one, which takes two iterators and creates a new

Str that contains a copy of the characters in the given sequence. Like the previous

constructor, it relies on copy and back_inserter to append the values in the range of [b, e) to

data. What's interesting about this constructor is that it is itself a template function. Because it

is a template, it effectively defines a family of constructors that can be instantiated for different

types of iterators. For example, this constructor could be used to create a Str from an array of

characters, or from a Vec<char>.

It is important to note that the class does not define a copy constructor, assignment operator,

or destructor. Why not?

The answer is that the defaults work. The Str class itself does no memory allocation. It can

leave the details of memory management to the synthesized operations, which call the

corresponding Vec operations. One way to see that the defaults work is to note that the Str

class does not need a destructor. Indeed, if it had one, there would be no work for it to do. In

general, a class that needs no destructor doesn't need an explicit copy constructor or

assignment operator either (§11.3.6/201).

12.2 Automatic conversions

So far, we have defined a set of constructors and implicitly defined copying, assignment, and

destruction. These operations give Str valuelike behavior: When we copy a Str object the

original and the copy will be independent of each other. Our next problem is to think about

conversions. Values of built-in type can often be converted automatically from one type to

another. For example, we can initialize a double from an int, and we can also assign an int to

a double:

double d = 10; // convert 10 to double and use the converted value to initialize d

double d2;

d2 = 10; // convert 10 to double and assign the converted value to d

In the case of our Str class, we have defined how to construct a Str from a const char*, so we

can write

Str s("hello"); // construct s

This definition constructs s by explicitly asking for the constructor that takes a const char*

argument. We would also like to be able to write

Str t = "hello"; // initialize t

s = "hello"; // assign a new value to s

Remember from §11.3.3/199 that the = symbol has two different meanings in this last

example. The first statement defines t, so the = indicates initialization. This form of

initialization always requires the copy constructor, which takes a const Str& as its argument.

The second statement is an expression statement, not a declaration, so the = is an

assignment operator. The only assignment operator that is relevant for Str objects is the one

that the compiler defined for us, which also expects a const Str& as its argument. In other

words, each statement in this second example uses a string literal, which has type const

char*, where a const Str& is expected.

We might think, therefore, that we need to give class Str an additional assignment operator

with a parameter of type const char*, and figure out how to overload the copy constructor.

Fortunately, it turns out that we do not need to do so, because there is already a constructor

that takes a const char*, and that constructor also acts as a user-defined conversion.

User-defined conversions say how to transform to and from objects of class type. As with

built-in conversions, the compiler will apply user-defined conversions to convert a value into

the type that is needed.

A class can define conversions in two ways: It can convert from other types to its type, or from

its type to other types. We'll discuss this second form of conversion in §12.5/222. The more

common conversion defines how to convert other types to the type that we are defining. We

do so by defining a constructor with a single argument.

Our Str class already has such a constructor, namely the one that takes a const char*.

Therefore, the compiler will use this constructor when an object of type Str is needed and an

object of type const char* is available. The assignment of a const char* to a Str is exactly

such a situation. When we write s = "hello"; what really happens is that the compiler uses the

Str(const char*) constructor to create an unnamed local temporary of type Str from the string

literal. It then calls the (synthesized) assignment operator of class Str to assign this temporary

to s.

12.3 Str operations

If we think about the kind of code we've written that used strings, we can see that we used

several operators:

cin >> s // use the input operator to read a string

cout << s // use the output operator to write a string

s[i] // use the index operator to access a character

s1 + s2 // use the addition operator to concatenate two strings

All these are binary operators, so that if we define them as functions, each function will have

two parameters, one of which may be implicit if the function is a member. As we saw in

§11.2.4/192, names for overloaded operators are formed by appending the operator symbol to

the word operator. Hence, operator>> is the name of the function that overloads the input

operator, operator[] names the index operation, and so on.

We may as well start with the index operator, because in §11.2.4/192, we've already seen

how to implement this operation, and we know that it must be a member of the class:

class Str {

public:

 // constructors as before

 char& operator[](size_type i) { return data[i]; }

 const char& operator[](size_type i) const { return data[i]; }

private:

 Vec<char> data;

};

The index operators just forward their work to the corresponding Vec operations. It is worth

noting that, as we did for class Vec, we define two versions of the index operator—one that

can operate on const objects and the other that cannot. By returning a reference to the

character, the nonconst version gives write access to the character that it returns. The const

version returns a reference to a const char, thereby preventing the user from writing to the

underlying character. We return const char& instead of a plain char for consistency with the

standard string class.

What about the other operators? The most interesting problem in defining these functions is

deciding whether these operations should be members of the Str class. It turns out that

answering this question involves different issues for each of these kinds of operators. We will

address input-output operators first; then, in §12.3.3/218, we'll look at the concatenation

operator.

12.3.1 Input-output operators

In §9.2.2/159, we had to decide whether compare should be a member of Student_info. We

suggested that one way to decide was to ask whether the operation affects the state of the

object. The input operator certainly changes its object's state. After all, we use the input

operator to read a new value into a preexisting object. Accordingly, we might think that we

should make the input operator a member of the Str class. However, doing so won't work as

we might expect.

To see why, we have to remember (§11.2.4/192) how the operands of an expression are

bound to the parameters of the overloaded operator function. For a binary operation, the left

operand is always bound to the first parameter, and the right operand is bound to the second.

In the case of member operator functions, the first parameter (the left operand) is always the

one that is passed implicitly to the member function. Thus,

cin >> s;

is equivalent to

cin.operator>>(s);

which calls the overloaded >> operator defined for the object cin. This behavior implies that

the >> operator must be a member of class istream.

Of course, we do not own the definition of istream, so we cannot add this operation to it. If

instead we make operator>> a member of Str, then our users would have to invoke the

operation on behalf of a Str:

s.operator>>(cin);

or, equivalently,

s >> cin;

which would flout the conventions used throughout the library. Therefore, we can conclude

that the input—and, by analogy, the output—operator must be a nonmember.

We can now update our Str class appropriately, by adding declarations for the input and

output operators to Str.h:

std::istream& operator>>(std::istream&, Str&); // added

std::ostream& operator<<(std::ostream&, const Str&) ; // added

The output operator is easy to write: It will iterate through the Str, writing a single character at

a time:

ostream& operator<<(ostream& os, const Str& s)

{

 for (Str::size_type i = 0; i != s.size(); ++i)

 os << s[i];

 return os;

}

The only catch is that this usage forces us to give Str a size function:

class Str {

public:

 size_type size() const { return data.size(); }

 // as before

};

Despite the simple form of the output operator, we should understand it thoroughly. Each time

through the loop, we invoke the Str::operator[] to fetch a character to write. That operator, in

turn, calls Vec::operator[] to obtain the actual value from the underlying vector. Similarly,

each time through the loop, we determine the size of our Str object by calling s.size(), which

calls the size member of the underlying Vec object to determine that object's size.

12.3.2 Friends

The input operator isn't much harder to write than the output operator. It needs to read and

remember characters from the input stream. Each time we call the input operator, it should

read and discard any leading whitespace, and then read and remember characters until it hits

whitespace or end-of-file. Our input operator is a bit simplified—it ignores some subtleties of

the input-output library that are beyond the scope of this book—but it does what we need

done:

// this code won't compile quite yet

istream& operator>>(istream& is, Str& s)

{

 // obliterate existing value(s)

 s.data.clear();

 // read and discard leading whitespace

 char c;

 while (is.get(c) && isspace(c))

 ; // nothing to do, except testing the condition

 // if still something to read, do so until next whitespace character

 if(is) {

 do s.data.push_back(c); // compile error!, data is private

 while (is.get(c) && !isspace(c));

 // if we read whitespace, then put it back on the stream

 if (is)

 is.unget();

 }

 return is;

}

First we'll explain this function; then we'll explain why it doesn't compile.

We start by discarding any previous value that data might have, because reading into a Str

should obliterate whatever data were present. Next we need to read characters, one at a time,

from the given stream, until we encounter a character that is not white- space. Because we

need to be able to detect whether we just read a whitespace character, we use the get

function on the input stream. Unlike the overloaded >> operators, which ignore whitespace,

the get function reads and returns whatever character is next in the stream, including

whitespace. Therefore, the while loop reads characters until it finds one that is not

whitespace, or it runs out of input. If the character we read was white- space, then there is

nothing to do but read again, so the body of the while is empty.

The if test checks whether we exited the while because we read a nonwhitespace character

or because we ran out of input. If the former, we want to read characters until we hit

whitespace again, appending each character that we read to data. We do so in the next

statement, which is a do while loop (§7.4.4/136) that arranges to append to data the

character that we had already read in the previous while loop, and then continues reading

until we run out of input or hit a whitespace character. Each time it reads a nonwhitespace

character, it uses push_back to append that character to data.

We could fall out of the do while either because we can no longer read from is, or because we

encountered a whitespace character. If the latter, we have read one character too many,

which we put back onto the input stream by calling is.unget(). The unget function undoes the

most recent get by backspacing the input stream by one character. After the call to unget, the

stream behaves as if the previous get had never been done.

As the comments indicate, this code fails to compile. The problem is that operator>> is not a

member of class Str, so it cannot access the data member of s. We faced a similar problem in

§9.3.1/161, when the compare function needed access to the name member from

Student_info objects. We solved that problem by adding an accessor function. In this case,

giving read access to data isn't enough: The input operator needs to be able to write data, not

just read it. The input operator is a part of our general Str abstraction, so giving it write access

to data is fine. On the other hand, we do not want all users to have write access to data, so

we cannot solve our problem by adding a public member that would let operator>> (and

therefore any user) write to data.

Rather than adding a (public) access function, we can say that the input operator is a friend

of class Str. A friend has the same access rights as a member. By making the input operator

a friend, we can allow it, along with our member functions, to access the private members of

class Str:

class Str {

 friend std::istream& operator>>(std::istream&, Str&);

 // as before

};

We've added a friend declaration to class Str. This declaration says that the version of

operator>> that takes an istream& and a Str& may access the private members of Str. Once

we have added this declaration to Str, our input operator will compile.

A friend declaration may appear at any point in the class definition: It makes no difference

whether it follows a private or public label. Because a friend function has special access

privileges, it is part of the interface to the class. Therefore, it makes sense to group friend

declarations at the beginning of the class definition, near the public interface for the class.

12.3.3 Other binary operators

What remains of our work on the Str class is to implement the + operator. Before we can do

so, we must make several decisions: Should the operator be a member? What are its

operands' types? What type should it return? As we shall see, these questions turn out to

have subtle implications.

For now, let's make some initial guesses about the answers. First, we know that we want to

be able to concatenate values that are of type Str. Second, we can observe that

concatenation does not change the value of either operand. These facts suggest that there is

no particular reason to decide to make the operator a member function. Finally, we know that

we want to be able to chain several concatenations into a single expression in order to allow

expressions such as

s1 + s2 + s3

where s1, s2, and s3 all have type Str. This usage suggests that the operator should return a

Str.

These decisions imply that we should implement concatenation as a nonmember:

Str operator+(const Str&, const Str&);

Before we launch into implementation, a bit of thought might suggest that if we offer

operator+, we might want to provide our users with operator+= as well. That is, we'd like to

let our users assign to s the value obtained by concatenating s and s1 in either of these

forms:

s = s + s1;

s += s1;

It turns out that the most convenient way to implement operator+ is to implement operator+=

first. Unlike the simple concatenation operator, the compound version changes its left

operand, so we make it a member of the Str class. After adding definitions for the new

concatenation operations, our final Str class looks like this:

class Str {

 // input operator implemented in §12.3.2/216

 friend std::istream& operator>>(std::istream&, Str&);

public:

 Str& operator+=(const Str& s) {

 std::copy(s.data.begin(), s.data.end(),

 std::back_inserter(data));

 return *this;

 }

 // as before

 typedef Vec<char>::size_type size_type;

 Str() { }

 Str(size_type n, char c): data(n, c) { }

 Str(const char* cp) {

 std::copy(cp, cp + std::strlen(cp), std::back_inserter(data));

 }

 template<class In> Str(In i, In j) {

 std::copy(i, j, std::back_inserter(data));

 }

 char& operator[](size_type i) { return data[i]; }

 const char& operator[](size_type i) const { return data[i]; }

 size_type size() const { return data.size(); }

private:

 Vec<char> data;

};

// output operator implemented in §12.3:2/216

std::ostream& operator<<(std::ostream&, const Str&);

Str operator+(const Str&, const Str&);

Because we use a Vec for our underlying storage, implementing operator+= is trivial: We call

copy to append a copy of the right operand to the Vec that is the left operand. As usual for

assignment, we return a reference to the left object as our result. Now we can implement

operator+ in terms of operator+=:

Str operator+(const Str& s, const Str& t) {

 Str r = s;

 r += t;

 return r;

}

Recall that concatenation is a nonmember function that will create a new Str. We create this

new Str by initializing a local variable named r to be a copy of s. That initialization uses the Str

copy constructor. Next, we invoke the += operator on r to concatenate t, and then we return r

(again through an implicit call to the copy constructor) as the result.

12.3.4 Mixed-type expressions

We have defined the concatenation operator to take operands of type const Str&. What

about expressions that involve character pointers? For example, what if we wanted to use our

Str class to implement the program from §1.2/12? That program contained code that looked

like

const std::string greeting = "Hello, " + name + "!";

where name is a string. Analogously, we'd like to be able to write

const Str greeting = "Hello, " + name + "!";

where name is now a Str.

We know that the + operator is left-associative, which means that evaluating this expression

is equivalent to evaluating

"Hello, " + name

and applying the + operator to the result and "!". In other words, the expression is equivalent

to

("Hello, " + name) + "!"

By breaking down the expression into its components, we can see that we have two different

forms of +. In one case, we pass a string literal as the first operand and a Str as the second.

In the other, the left operand is a Str obtained as the result of a concatenation, and the right

operand is a string literal. Thus, in each case we are calling + on a const char* and a Str in

some order.

In §12.3.3/218, we defined + with arguments of type Str, not const char*. However, we know

from §12.2/213 that by defining a constructor that takes a const char*, we also defined a

conversion operator from const char* to Str. Evidently, our Str class handles these

expressions already. In each case, the compiler will convert the const char* argument to type

Str, and then it will invoke operator+.

It is important to understand the implications of conversion operations. For example,

Str greeting = "Hello, " + name + "!";

gives greeting the same value as if we had written

Str temp1('Hello, "); // Str::Str(const char*)

Str temp2 = temp1 + name; // operator*(const Str&, const Str&)

Str temp3("!") // Str::Str(const char*)

Str greeting = temp2 + temp3; // operator*(const Str&, const Str&)

Seeing all these temporaries, we can imagine that this approach might be expensive. In

practice, because of the perceived cost of generating temporaries, commercial string library

implementations often take the more tedious route of defining specific versions of the

concatenation operator for every combination of operands, rather than relying on automatic

conversions.

12.3.5 Designing binary operators

It is important to appreciate the role of conversions in the design of binary operators. If a class

supports conversions, then it is usually good practice to define binary operators as

nonmember functions. By doing so, we preserve symmetry between the operands.

If an operator is a member of a class, then that operator's left operand cannot be the result of

an automatic conversion. The reason for this restriction is so that when a programmer writes

an expression such as x + y, the compiler does not have to examine every type in the entire

program to discover whether it is possible to convert x to a type that has a member named

operator+. Because of the restriction, the compiler (and the programmer) has to look only at

nonmember operator+ functions and at operator+ functions that are members of the class of

x.

The left operand of a nonmember operator, and the right operand of any operator, follow the

same rules as any ordinary function argument: The operand can be of any type that can be

converted to the parameter type. If we make the binary operator a member function, we have

introduced an asymmetry with respect to its operands: The right operand can be the result of

an automatic conversion, but the left operand cannot. Such asymmetries are fine for

intrinsically asymmetric operators such as +=, but in the context of symmetric operands, they

are confusing and error prone. It is almost always desirable to treat both operands of such

operators equivalently, which we can arrange only by making the operator a nonmember

function.

In the case of the assignment versions of binary operators, we want to constrain the left

operand to be of the class type. Otherwise, what would happen? If we allowed conversions for

the left operand, then we might convert that operand to the class type and assign a new value

to the resulting temporary. Because that value would be a temporary object, once we

completed the assignment we would have no way to access the object to which we had just

assigned! Therefore, like the assignment operator itself, all of the compound- assignment

operators should be members of the class.

12.4 Some conversions are hazardous

Recall that in §11.2.2/190, we defined as explicit the constructor that took a size. Now t hat

we know that constructors that take a single argument define conversions, we can understand

what happens when we make a constructor explicit: Doing so tells the compiler to use that

constructor only to construct objects explicitly. The compiler will not use an explicit

constructor to create objects implicitly by converting operands in expressions or function calls.

To understand why explicit constructors might be useful, let's assume that we did not declare

the Vec constructor as explicit. Then we could implicitly build a Vec of a given size. We could

use this implicit conversion when calling a function, such as our frame function from

§5.8.1/93. Recall that that function takes a single parameter of type const vector<string>&,

and produces a character picture that puts a frame around the input vector. Suppose that

frame used Vec instead of vector, that we had not given Vec an explicit constructor, and that

we were to execute

Vec<string> p = frame(42);

What would happen? What should happen? More important, how could a user figure out what

will happen?

In this case, what would happen is that the user would get a framed picture with 42 empty

rows. Was this behavior what the user intended? Isn't it more likely that the user thought that

the program would put a frame around the value 42? This kind of call is, more likely than not,

a mistake, and so our Vec class—and, for that matter, the standard vector class—makes the

constructor that takes an integer value explicit.

In general, it is useful to make explicit the constructors that define the structure of the object

being constructed, rather than its contents. Those constructors whose arguments become part

of the object usually should not be explicit.

As an example, the string and Str classes have constructors that take a single const char*

and are not explicit. Each constructor uses its const char* argument to initialize the value of

its object. Because the argument determines the value of the resulting object, it is sensible to

allow automatic conversions from a const char* in expressions or function calls.

On the other hand, the vector and Vec constructors that take a single argument of type

Vec::size_type are explicit. These constructors use their argument value to determine how

many elements to allocate. The constructor argument determines the structure of the object,

but not its value.

12.5 Conversion operators

In §12.2/213, we saw that some constructors also define conversions. Class authors can also

define explicit conversion operators, which say how to convert an object from its type to a

target type. Conversion operators must be defined as members of a class. The name of a

conversion operator is operator followed by the target type name. Thus, if a class has a

member called operator double, that member says how to create a value of type double from

a value of the class type. For example,

class Student_info {

public:

 operator double();

 // ...

};

would say how to create a double from a Student_info object. The meaning of this

conversion would depend on the definition of the operator, which might be to convert the

object to its corresponding final grade. The compiler would use this conversion operator any

time we had an object of type Student_info but needed an object of type double. So, for

example, if vs were a vector<Student_info>, we could calculate the average grade of all

students as follows:

vector<Student_info> vs;

// fill up vs

double d = 0;

for (int i = 0; i != vs.size(); ++i)

 d += vs[i]; // vs[i] is automatically converted to double

cout << "Average grade: " << d / vs.size() << endl;

Conversion operators are most often useful when converting from a class type to a built-in

type, but they can also be useful when converting to another class type for which we do not

own the code. In either case, we cannot add a constructor to the target type, so we can define

the conversion operator only as part of the class that we own.

In fact, we use this kind of conversion operator every time we write a loop that implicitly tests

the value of an istream. As we discussed in §3.1.1/39, we can use an istream object where a

condition is expected:

if (cin >> x) { /*...*/ }

which we saw was equivalent to

cin >> x;

if (cin) { /*...*/ }

We can now understand what happens in this expression.

As we know, the if tests a condition, which is an expression that yields a truth value. The

precise type of such a truth value is bool. Using a value of any arithmetic or pointer type

automatically converts the value to type bool, so we can use values of these types as the

expression in a condition. Of course, iostream is neither a pointer nor an arithmetic type.

However, the standard library defines a conversion from type istream to void*, which is a

pointer to void. It does so by defining istream::operator void*, which tests various status flags

to determine whether the istream is valid, and returns either 0 or an implementation-defined

nonzero void* value to indicate the state of the stream.

We have not previously used the void* type. We said in §6.2.2/114 that the void type could be

used only in a few ways—the basis for a pointer being one of them. A pointer to void is

sometimes called a universal pointer, because it is a pointer that can point to any type of

object. Of course, you cannot dereference the pointer, because the type of the object to yield

isn't known. But one thing that can be done with a void* is to convert it to bool, which is

exactly how it is used in this context.

The reason that class istream defines operator void* rather than operator bool is to allow

the compiler to detect the following erroneous usage:

int x;

cin << x; // we should have written cin >> x;

If class istream were to define operator bool, this expression would use istream::operator

bool to convert cin to bool, and then convert the resulting bool value to int, shift that value left

by a number of bits equal to the value of x, and throw the result away! By defining a

conversion to void*, rather than to an arithmetic type, the standard library still allows an

istream to be used as a condition, but prevents it from being used as an arithmetic value.

12.6 Conversions and memory management

Many C++ programs interface to systems written in C or assembly language that use

null-terminated arrays of characters to hold string data. As we saw in §10.5.2/180, the C++

standard library itself uses this convention to obtain the names of input and output files.

Because of this convention, we might conclude that our Str class should provide a conversion

from Str to a null-terminated array of characters. If we did so, then our users could

(automatically) pass Strs to functions that operate on null-terminated arrays. Unfortunately, as

we shall see, doing so is fraught with memory-management pitfalls.

Assuming that we wanted to provide a conversion from Str to char*, we'd probably want to

provide both const and nonconst versions:

class Str {

public:

 // plausible, but problematic conversion operations

 operator char*(); // added

 operator const char*() const; // added

 // as before

private:

 Vec<char> data;

};

With this rewrite, Str users could write code such as

Str S;

// ...

ifstream in(s); // wishful thinking: convert s and then open the stream named s

The only problem is that these conversions are almost impossible to implement well. We can't

just return data, most obviously because it's the wrong type: data is a Vec<char>, and we

need an array of char. More subtly, even if the types matched, returning data would violate

class Str's encapsulation: A user who obtained a pointer to data could use that pointer to

change the value of the string. Just as bad, consider what happens when the Str is destroyed.

If the user tries to use the pointer after the Str object no longer exists, then the pointer will

point to memory that has been returned to the system and is no longer valid.

We can solve the encapsulation problem by providing only a conversion to const char*, but

doing so does not prevent a user from destroying the Str and then using the pointer. We can

solve this second problem by allocating new space for a copy of the characters from data,

and returning a pointer to this newly allocated space. The user would then have to manage

this space, freeing it when it is no longer needed.

As it turns out, this design won't work either. Conversions may happen implicitly, in which

case the user has no pointer to destroy! Look again at

Str s;

ifstream is(s); // implicit conversion—how can we free the array?

If the Str class had the proposed conversion, then when we passed s to the ifstream

constructor, we would implicitly convert the Str to the const char* that the constructor

expects. This conversion would allocate new space to hold a copy of the value of s. However,

there is no explicit pointer to this space, and so the user cannot free it. Clearly, a design that

mandates memory leaks cannot be right.

When we design a class, we want to avoid letting users trip up by writing innocuous- looking

code that gets them in trouble. Before the C++ standard was finished, many library vendors

offered various kinds of strings. Some surely provided implicit conversions to character

arrays, but did so in a way that allowed users to make one or both of the potential errors

outlined earlier.

The standard string library takes a different approach: It lets users get a copy of the string in a

character array, but makes them do so explicitly. The standard string class provides three

member functions for getting a char array from a string. The first, c_str(), copies the contents

of the string into a null-terminated char array. The string class owns the array, and the user is

expected not to delete the pointer. Data in the array are ephemeral, and will be valid only until

the next call of a member function that might change the string. Users are expected either to

use the pointer immediately or to copy the data into storage that they will manage. The

second function, data(), is like c_str(), except that it returns an array that is not null

terminated. Finally, the copy function takes a char* and an integer as arguments, and copies

as many characters as indicated by the integer into space pointed to by the char*, which

space the user must allocate and free. We leave the implementation of these functions as an

exercise.

Note that both c_str and data share the pitfalls of the implicit conversion to const char*. On

the other hand, because users must request the conversion explicitly, they are more likely to

know about the functions that they call. This knowledge should include the pitfalls inherent in

retaining a copy of the pointer. If the library allowed implicit conversions, it would be easier for

users to stumble into these problems. They might not even be aware that they had caused a

conversion to take place, so they might be less likely to understand why things failed when

they did.

12.7 Details

Conversions are defined by nonexplicit constructors that take a single argument, or by

defining a conversion operator of the form operator type-name(), where type-name names

the type to which the class type can be converted. Conversion operators must be members. If

two classes define conversions to each other's types, ambiguities can result.

friend declarations can occur anywhere within the class definition, and allow the friend to

access private members of the class granting friendship.

template<class T>

class Thing {

 friend std::istream& operator>>(std::istream&, Thing&);

 // ...

};

As we will see in §13.4.2/246, classes can also be named as friends.

Template functions as members: A class may have template functions as members. The

class itself might or might not be a template. A class that has a template member function

effectively has an unbounded family of member functions with the same name. Template

member functions are declared and defined as are any other template functions.

string operations

s.c_str()

Yields a const char* that points to a null-terminated array. The data in the array are valid

only until the next string operation that might modify s. The user may not delete the pointer

and should not hold a copy of it because the contents pointed to have a limited lifetime.

s.data()

Similar to s.c_str(), but the array is not null terminated.

s.copy(p, n)

Copies up to an integral number n of characters from s into space pointed to by the

character pointer p. The user is responsible for ensuring that p points at space that is

sufficient to hold n characters.

Exercises

12-0. Compile, execute, and test the programs in this chapter.

12-1. Reimplement the Str class, but choose an implementation strategy that requires that the

class manage the storage itself. For example, you might store an array of char and a length.

Consider what implications this change in design has for copy control. Also consider the cost

of using Vec, (e.g., in storage overhead).

12-2. Implement the c_str, data, and copy functions.

12-3. Define the relational operators for Str. In doing so, you will want to know that the

<cstring> header defines a function called strcmp, which compares two character pointers.

The function returns a negative integer if the null-terminated character array denoted by the

first pointer is less than the second, zero if the two strings are equal, or a positive value if the

first string is greater than the second.

12-4. Define the equality and inequality operators for Str.

12-5. Implement concatenation for Str so as not to rely on conversions from const char*.

12-6. Give Str an operation that will let us implicitly use a Str object as a condition. The test

should fail if the Str is empty, and should succeed otherwise.

12-7. The standard string class provides random-access iterators to manipulate the string's

characters. Add iterators and the iterator operations begin and end to your Str class.

12-8. Add the getline function to the Str class.

12-9. Use class ostream_iterator to reimplement the Str output operator. Why didn't we ask

you to reimplement the input operator using class istream_iterator?

12-10. Having seen in §12.1/212 how Str defined a constructor that takes a pair of iterators,

we can imagine that such a constructor would be useful in class Vec. Add this constructor to

Vec, and reimplement Str to use the Vec constructor instead of calling copy.

12-11. If you add the operations listed in these exercises, then you can use this Str class in all

the examples in this book. Reimplement the operations on character pictures from Chapter 5

and the split functions from §5.6/87 and §6.1.1/103.

12-12. Define the insert function that takes two iterators for the Vec and Str classes.

12-13. Provide an assign function that could be used to assign the values in an array to a

Vec.

12-14. Write a program to initialize a Vec from a string.

12-15. The read_hw function from §4.1.3/57 checked the stream from which it read to

determine whether the function had hit end-of-file, or had encountered an invalid input. Our

Str input operator does no such check. Why? Will it leave the stream in an invalid state?

13

Using inheritance and dynamic binding

The last several chapters have explored how we can build our own data types. This ability is

one of the foundations of object-oriented programming (OOP). This chapter will begin a look

at the the other key components of OOP—inheritance and dynamic binding.

In Chapter 9, we described a small class intended to encapsulate the operations used to solve

the grading problem from Chapter 4. This chapter will revisit that problem. This time, we'll

assume that there's a change in specification: Students can take the course for

undergraduate or graduate credit. Obtaining graduate credit requires that the students do

some extra work. We'll assume that in addition to the homework and exams that all students

must complete, graduate students also have to write a thesis. As we'll see, this change in

problem specification lends itself to an object-oriented solution, which we'll use to explore the

language features that C++ offers to support OOP.

Our objective is to write new classes that will mirror these new requirements. We'd also like

our previous solution to the grading problem, from §9.6/166, to continue to work. That is, we'd

like classes that allow us to generate the final grade report by reading a file of grade records

and writing a formatted report using the original code.

13.1 Inheritance

In our grading problem we know that a record for graduate credit is the same as for

undergraduate credit, except that it has additional properties related to the thesis. Such

contexts are natural places for inheritance. Inheritance is one of the cornerstones of OOP.

The basic idea is that we can often think of one class as being just like another, except for

some extensions. In this problem, all students must complete the homework and exams, but

some must also do a thesis. What we'd like is to define two classes: one to represent the core

requirements and the other to represent the requirements for graduate credit.

We mostly know how to write the first of these classes: It is similar to our previous

Student_info class, which we'll rename Core for reasons that will become fully apparent in

§13.4/243. For now, what's useful to know is that Core no longer represents all kinds of

students, but only those students who meet the core requirements for the course.

We'd like to reserve Student_info as a name that denotes any kind of student. In addition to

its name change, we'll add a private utility function to our Core class to read the portion of a

student's record that all students have in common:

class Core {

public:

 Core();

 Core(std::istream&);

 std::string name() const;

 std::istream& read(std::istream&);

 double grade() const;

private:

 std::istream& read_common(std::istream&);

 std::string n;

 double midterm, final;

 std::vector<double> homework;

};

Class Grad will capture the extra requirements for obtaining graduate credit:

class Grad: public Core {

public:

 Grad();

 Grad(std::istream&);

 double grade() const;

 std::istream& read(std::istream&);

private:

 double thesis;

};

This definition says that we're defining a new type named Grad, which is derived from or

inherits from Core, or, equivalently, that Core is a base class of Grad. Because Grad

inherits from Core, every member of Core is also a member of Grad—except for the

constructors, the assignment operator, and destructor. The Grad class can add members of

its own, as we do here with the data member thesis and the constructors for Grad. It can

redefine members from the base class, as we do with the grade and read functions.

However, a derived class cannot delete any of the base class' members.

The use of public in public Core says that the fact that Grad inherits from Core is part of its

interface, rather than part of its implementation. That is, Grad inherits the public interface to

Core, which becomes part of the public interface to Grad. The public members of Core are

effectively public members of Grad. For example, if we have a Grad object, we can call its

name member function to obtain the student's name, even though Grad does not define its

own name function.

The Grad class differs from the Core class in that it keeps track of a grade for the thesis, and

uses a different algorithm for calculating the final grade. Thus, Grad objects will have five

data elements. Four of them are inherited from Core; the fifth is a double value named thesis.

It will have two constructors and four member functions, two of which redefine the

corresponding members of Core, and the name and read_common functions, which it

inherits from Core.

13.1.1 Protection revisited

As it stands, all four data elements and the read_common function in Core are inaccessible

to member functions in Grad. We said that the members of Core were private. Only the class

and its friends may access private members. Unfortunately, in order to write the Grad

versions of the grade and read functions, we need access to some of these private

members. We can fix this problem by rewriting the Core class using a protection label that we

have not seen before:

class Core {

public:

 Core() ;

 Core(std::istream&);

 std::string name() const;

 double grade() const;

 std::istream& read(std::istream&);

protected:

 std::istream& read_common(std::istream&);

 double midterm, final;

 std::vector<double> homework;

private:

 std::string n;

};

We still say that n is private, but now the read_common function and the midterm, final, and

homework data members are protected. The protected label gives derived classes, such as

Grad, access to the protected members of their constituent base-class objects, but keeps

these elements inaccessible to users of the classes.

Because n is a private member of Core, only the members and friends of class Core may

access n. Grad has no special access to n; it can access n only through public member

functions of Core.

The read, name, and grade functions are public members of Core, and as such they are

available to all users of class Core—including classes derived from Core.

13.1.2 Operations

To complete our classes, we need to implement four constructors: the default constructor and

the constructor that takes an istream, once for each class. We must also implement six

operations: the name and read_common operations in class Core, and the read and grade

functions for both classes. We'll see how to write the constructors in §13.1.3/231.

Before writing our code, we need to think a bit about how student records will be structured.

As before, we'll want to accommodate a variable number of homework assignments, so those

grades must come at the end of each record. Therefore, we'll assume that our records will

consist of a student's name followed by the midterm and final exam grades. If the record is for

undergraduate credit, then the homework grades will follow immediately. If the record is for

graduate credit, then the thesis grade will follow the final exam, but precede the homework

grades.

With this information, we know how to write the operations on Core:

string Core::name() const { return n; }

double Core::grade() const

{

 return ::grade(midterm, final, homework);

}

istream& Core::read_common(istream& in)

{

 // read and store the student's name and exam grades

 in >> n >> midterm >> final;

return in;

}

istream& Core::read(istream& in)

{

 read_common(in);

 read_hw(in, homework);

 return in;

}

The Grad::read function is similar, but reads the thesis before calling read_hw:

istream& Grad::read(istream& in)

{

 read_common(in);

 in >> thesis;

 read_hw(in, homework);

 return in;

}

Note that in the definition of Grad::read, we can refer to elements from the base class without

any special notation, because these elements are also members of Grad. If we wanted to be

explicit about the fact that the members were inherited from Core, we could use the scope

operator to do so:

istream& Grad::read(istream& in)

{

 Core::read_common(in);

 in >> thesis;

 read_hw(in, Core::homework);

 return in;

}

Of course, the thesis member is unqualified because that member is a part of Grad and not a

part of Core. We could have written Grad::thesis, but not Core::thesis.

The grade function changes to account for the effect of thesis. Our policy is that the student

receives the lesser of the grade obtained on the thesis and the grade that would have been

obtained if we just counted the exams and homework scores:

double Grad::grade() const

{

 return min(Core::grade(), thesis);

}

Here we want to call the grade function in the base class in order to calculate the score

independently from the thesis grade. In this case, the use of the scope operator is essential.

Had we written

return min(grade(), thesis);

we would have (recursively) called the Grad version of grade, leading to disaster.

We use the min function from <algorithm> to determine which grade to return. The min

function operates like max except that it returns the smaller of its two operands. As with max,

those operands must be of exactly the same type.

13.1.3 Inheritance and constructors

Before we write the constructors for Core and Grad, we need to understand how the

implementation creates objects of a derived type. As with any class type, the implementation

begins by allocating space for the object. Next, it runs the appropriate constructor to initialize

the object. The fact that the object is of a derived type adds an extra step to the construction

process in order to construct the base-class part of the object. Derived objects are constructed

by

Allocating space for the entire object (base-class members as well as derived

members)

Calling the base-class constructor to initialize the base-class part(s) of the object

Initializing the members of the derived class as directed by the constructor initializer

Executing the body of the derived-class constructor, if any

The only new part is how we select which base-class constructor to run. Not surprisingly, we

use the constructor initializer to specify the base-class constructor that we want. The

derived-class constructor initializer names its base class followed by a (possibly empty) list of

arguments. These arguments are the initial values to use in constructing the base- class part;

they serve to select the base-class constructor to run in order to initialize the base. If the

initializer does not specify which base-class constructor to run, then the base- class default

constructor is used to build the base-part of the object.

class Core {

public:

 // default constructor for Core

 Core(): midterm(O), final(0) { }

 // build a Core from an istream

 Core(std::istream& is) { read(is); }

 // ...

};

class Grad: public Core {

public:

 // both constructors implicitly use Core::Core() to initialize the base part

 Grad(): thesis(0) { }

 Grad(std::istream& is) { read(is); }

 // ...

};

The constructors for Core are identical to the ones in §9.5.1/165 and §9.5.2/166: They specify

how to make a Core from nothing or from an istream. The constructors for Grad say how to

create a Grad from these same values, that is, either from no argument or from an istream&.

It is worth noting that there is no requirement that the derived- class constructors take the

same argument(s) as the constructors for the base class.

The default constructor for Grad says that to make a Grad from nothing, the implementation

should construct its Core part and set the thesis member to 0. As it stands, most of this work

is implicit: First, because the constructor initializer is empty, we implicitly invoke the default

constructor for Core to initialize the midterm, final, homework, and name members. In the

same fashion, the Core default constructor implicitly initializes name and homework through

their default constructors, and explicitly initializes only midterm and final. The only explicit

action that the default Grad constructor takes is to initialize the thesis member. Once this is

done, there is no other work for the constructor to do, so the function body is empty.

We make a Grad from an istream in much the same way that we make a Core from an

istream—namely, by calling the read member. Before doing so, though, we first (implicitly)

invoke the base-class default constructor to initialize the base part of the object. Then,

because this constructor is a member of class Grad, the read that is called is Grad::read. We

don't bother to initialize thesis because the read function reads a value into thesis from is.

It is important to understand how derived-class objects are constructed. Executing

Grad g;

causes the system to allocate enough space to hold Grad's five data elements, run the Core

default constructor to initialize the data members in the Core part of g, and then run the

default constructor for Grad. Similarly, if we execute

Grad g(cin);

then after allocating an appropriate amount of space, the implementation will run the Core

default constructor, followed by the Grad::Grad(istream&) constructor to read values into the

name, midterm, final, thesis, and homework members.

13.2 Polymorphism and virtual functions

We have not yet completely reimplemented the original Student_info abstraction. That abstraction

relied on a nonmember function to support part of its interface: It used the compare function to

compare two student records. This function is used by sort to arrange records in alphabetical order.

Our new comparison function is identical to the one we wrote in §9.3.1/162 except for the change in

type name:

bool compare(const Core& c1, const Core& c2)

{

 return c1.name() < c2.name();

}

We compare two student records by comparing their names. We delegate the real work to the

string library < operator. What is interesting about this code is that we can use it to compare both

Core records and Grad records, or even to compare a Core record with a Grad record:

Grad g(cin); // read a Grad record

Grad g2(cin); // read a Grad record

Core c(cin); // read a Core record

Core c2(cin); // read a Core record

compare(g, g2); // compare two Grad records

compare(c, c2); // compare two Core records

compare(g, c); // compare Grad record with a Core record

In each of these calls to compare, the name member of class Core will be run to determine the

value to return from compare. Obviously, this is the right member to call for class Core, but what

about for Grad? When we defined class Grad, we said that it is inherited from Core, and we did not

redefine the name function. Thus, when we invoke g.name() for a Grad object g, we are invoking

the name member that it inherited from Core. That function operates the same way on a Grad as it

does on a Core: It fetches the underlying n field from the Core part of the object.

The reason that we can pass a Grad object to a function expecting a Core& is that we said that

Grad is inherited from Core, so every Grad object has a Core part:

Because every Grad object has a Core part, we can bind compare's reference parameters to the

Core portions of Grad objects, exactly as we can bind them to plain Core objects. Similarly, we

could have defined compare to operate on pointers to Core or on objects of type Core (as opposed

to a reference to Core). In either case, we could still call the function on behalf of a Grad object. If

the function took pointers, we could pass a pointer to Grad. The compiler would convert the Grad*

to a Core*, and would bind the pointer to the Core part of the Grad object. If the function took a

Core object, then what would be passed is just the Core portion of the object. There can be striking

differences in behavior, depending on whether we pass an object itself, or a reference or pointer to

the object—as we shall now see.

13.2.1 Obtaining a value without knowing the object's type

Our compare function does the right thing when we call it with a Grad object as an argument

because the name function is shared by both Grad and Core objects. What if we wanted to

compare students, not on the basis of their names, but on the basis of their final grades? For

example, instead of producing a listing of final grades sorted by name, we might need to produce a

listing sorted by final grade.

As a first cut at solving this problem, we'd write a function that is similar to compare:

bool compare_grades(const Core& c1, const Core& c2)

{

 return c1.grade() < c2.grade();

}

The only difference is that here we're invoking the grade function rather than the name function.

This difference turns out to be significant!

The difference is that Grad redefines the meaning of the grade function, and we have done nothing

to distinguish between these two versions of grade. When we execute the compare_grades

function, it will execute the Core::grade member, just as compare executes Core::name. In this

case, if we are operating on a Grad object, then the version from Core gives the wrong answer,

because the grade functions in Core and Grad behave differently from each other. For Grad

objects, we must run Grad::grade in order to account for the thesis.

What we need is a way for compare_grades to invoke the right grade function, depending on the

actual type of object that we pass: If c1 or c2 refers to a Grad object, then we want the Grad

version of grade; if the object is of type Core, then we want the one from Core. We want to make

that decision at run time. That is, we want the system to run the right function based on the actual

type of the objects passed to the function, which is known only at run time.

To support this kind of run-time selection, C++ provides virtual functions:

class Core {

public:

 virtual double grade() const; // virtual added
 // ...

};

We now say that grade is a virtual function. When we call compare_grades, the implementation

will determine the version of grade to execute by looking at the actual types of the objects to which

the references c1 and c2 are bound. That is, it will determine which function to run by inspecting

each object that we passed as an argument to compare_grades. If the argument is a Grad object,

it will run the Grad::grade function; if the argument is a Core object, it will run the Core::grade

function.

The virtual keyword may be used only inside the class definition. If the functions are defined

separately from their declarations, we do not repeat virtual in the definitions. Thus, the definition of

Core::grade() need not change. Similarly, the fact that a function is virtual is inherited, so we need

not repeat the virtual designation on the declaration of grade within the Grad class. We do have to

recompile our code with the new Core class definition. Once we have done so, then because the

base-class version is virtual, we get the behavior that we need.

13.2.2 Dynamic binding

This run-time selection of the virtual function to execute is relevant only when the function is called

through a reference or a pointer. If we call a virtual function on behalf of an object (as opposed to

through a reference or pointer), then we know the exact type of the object at compile time. The type

of an object is fixed: It is what it is, and does not vary at run time. In contrast, a reference or pointer

to a base-class object may refer or point to a base-class object, or to an object of a type derived

from the base class, meaning that the type of the reference or pointer and the type of the object to

which a reference or pointer is bound may differ at run time. It is in this case that the virtual

mechanism makes a difference.

For example, assume we rewrote compare_grades as follows:

// incorrect implementation!
bool compare_grades(Core c1, Core c2)

{

 return c1.grade() < c2.grade();

}

In this version, we say that our parameters are objects, not references to objects. In this case, we

always know the type of objects represented by c1 and c2: They are Core objects. We can still call

this function on behalf of a Grad object, but the fact that the argument had type Grad is immaterial.

In this case, what happens is that what we pass is the base part of the object. The Grad object will

be cut down to its Core part, and a copy of that portion of the Grad object will be passed to the

compare_grades function. Because we said that the parameters are Core objects, the calls to

grade are statically bound—they are bound at compile time—to Core::grade.

This distinction between dynamic binding and static binding is essential to understanding how C++

supports OOP. The phrase dynamic binding captures the notion that functions may be bound at run

time, as opposed to static bindings that happen at compile time. If we call a virtual function on

behalf of an object, the call is statically bound— that is, it is bound at compile time—because there

is no possibility that the object will have a different type during execution than it does during

compilation. In contrast, if we call a virtual function through a pointer or a reference, then the

function is dynamically bound—that is, bound at run time. At run time, the version of the virtual

function to use will depend on the type of the object to which the reference or pointer is bound:

Core c;

Grad g;

Core* p;

Core& r = g;

c.grade(); // statically bound to Core::grade()

g.grade(); // statically bound to Grad::grade()

p->grade(); // dynamically bound, depending on the type of the object to which p points

r.grade(); // dynamically bound, depending on the type of the object to which r refers

The first two calls can be statically bound: We know that c is a Core object, and that at run time, c

will still be a Core object. Therefore, the compiler can statically resolve this call, even though grade

is a virtual function. In the third and fourth calls, however, we can't know the type of the object to

which p or r refers until run time: They might be Core or Grad objects. Hence, the decision as to

which function to run in these cases must be delayed until run time. The implementation makes that

decision based on the type of the object to which p points or to which r refers.

The fact that we can use a derived type where a pointer or reference to the base is expected is an

example of a key concept in OOP called polymorphism. This word, from the Greek polymorphos,

meaning "of many forms," was already in use in English in the mid-nineteenth century. In a

programming context, it refers to the ability of one type to stand in for many types. C++ supports

polymorphism through the dynamic-binding properties of virtual functions. When we call a virtual

through a pointer or reference, we make a polymorphic call. The type of the reference (or pointer) is

fixed, but the type of the object to which it refers (or points) can be the type of the reference (or

pointer) or any type derived from it. Thus, we can potentially call one of many functions through a

single type.

One final note about virtual functions: These functions must be defined, regardless of whether the

program calls them. Nonvirtual functions may be declared but not defined, as long as the program

does not call them. Many compilers generate mysterious error messages for classes that fail to

define one or more virtual functions. If your program evokes a message from the compiler that you

do not understand, and that message says that something is undefined, you should verify that you

have defined all of your virtual functions. You are likely to find that the error goes away when you do

so.

13.2.3 Recap

Before we continue, it is probably worth summarizing where we are, and making one slight

additional change: We'll make the read function virtual as well. We'd like to be able to have the

choice of which read function to run depend on the type of the object on which it is invoked. With

that final change, let's look at our classes:

class Core {

public:

 Core(): midterm(O), final (0) { }

 Core(std::istream& is) { read(is); }

 std::string name() const;

 // as defined in §13.1.2/230

 virtual std::istream& read(std::istream&);

 virtual double grade() const;

protected:

 // accessible to derived classes
 std::istream& read_common(std::istream&);

 double midterm, final;

 std::vector<double> homework;

private:

 // accessible only to Core

 std::string n;

};

class Grad: public Core {

public:

 Grad(): thesis(0) { }

 Grad(std::istream& is) { read(is); }

 // as defined in §13.1.2/230; Note: grade and read are virtual by inheritance
 double grade() const;

 std::istream& read(std::istream&);

private:

 double thesis;

};

bool compare(const Core&, const Core&);

We have defined two classes to encapsulate our two kinds of students. The first class, Core,

represents students meeting the core requirements for the course. Our second class inherits from

Core, adding the requirements for completing a thesis. We can create Core or Grad objects in two

ways. The default constructor creates a properly initialized, empty object; the other constructor takes

an istream& and reads initial values from the specified stream. The operations let us read into an

object, resetting its values, and let us fetch the student's name or final grade. Note that in this

version, we have made both the grade and read functions virtual. Finally, our interface includes a

global, nonmember compare function that compares two objects by comparing students' names.

13.3 Using inheritance to solve our problem

Now that we have classes that model our different kinds of students, we would like to use

these classes to solve the grading problem from §9.6/166. That program read a file that

contained student grade records, computed the final grade for each student, and wrote a

formatted report in alphabetical order by student name. We'd like to solve the same problem,

but do so for a file that contains records for both kinds of students.

Before solving the whole problem, we'll solve two simpler problems: We will write programs

that can read files that consist entirely of one kind of record or the other. Both of these

programs will look just like our original except for the type declarations:

int main()

{

 vector<Core> students; // read and process Core records

 Core record;

 string::size_type maxlen = 0;

 // read and store the data

 while (record.read(cin)) {

 maxlen = max(maxlen, record.name().size());

 students.push_back(record);

 }

 // alphabetize the student records

 sort(students.begin(), students.end(), compare);

 // write the names and grades

 for (vector<Core>::size_type i = 0; i != students.size(); ++i) {

 cout << students[i].name()

 << string(maxlen + 1 - students[i].name.size(), ' ');

 try {

 double final_grade = students[i].grade(); // Core::grade

 streamsize prec = cout.precision();

 cout << setprecision(3) << final_grade

 << setprecision(prec) << endl;

 } catch (domain_error e) {

 cout << e.what() << endl;

 }

 }

 return 0;

}

We can write the same program to handle Grad records by changing the type definitions:

int main()

{

 vector<Grad> students; // different type in the vector

 Grad record; // different type into which to read

 string::size_type maxlen = 0;

 // read and store the data

 while (record.read(cin)) { // read from Grad, not Core

 maxlen = max(maxlen, record.name().size());

 students.push_back(record);

 }

 // alphabetize the student records

 sort(students.begin(), students.end(), compare);

 // write the names and grades

 for (vector<Grad>::size_type i = 0; i != students.size(); ++i) {

 cout << students[i].name()

 << string(maxlen + 1 - students[i].name.size(), ' ');

 try {

 double final_grade = students[i].grade(); // Grad::grade

 streamsize prec = cout.precision();

 cout << setprecision(3) << final_grade

 << setprecision(prec) << endl;

 } catch (domain_error e) {

 cout << e.what() << endl;

 }

 }

 return 0;

}

Of course, the functions that are run in each instance depend on the type of record, and on

the type of the objects contained in the vector. For example, the expression

record.read(cin)

calls Core::read or Grad::read, depending on the type of record. It is worth noting that this

call is statically bound: The dependence on the type of record has nothing to do with the

virtual nature of the read function. We are invoking the function on behalf of an object, not a

pointer or reference to an object. Thus, record is either a Core or a Grad, depending on

which version of the program is being run. However, once we define record, its type is fixed,

and so the call to record.read(cin) is likewise bound at compile time. Similarly, the grade

function that we call when generating output,

students[i].grade()

will be statically bound to the one from class Core when we run the first program, and to the

one from Grad when we run the second program.

In both versions of the program, the uses of name() refer to the (nonvirtual) version defined in

class Core. That function is inherited by Grad, so that when we run it for a Grad object, we

are still running the version that we defined in Core. The compare function that we pass to

sort operates on references to Core. When the version of the program that operates on Grad

records runs, it will compare the Core parts.

Obviously, it is tedious to write separate versions of our program. What we really want to do is

to write a single version that can handle either Core or Grad objects.

In order to write a single function that can read a file of either Core records or Grad records,

we need to look closely at the code, and identify those places where the type of the record

matters. In order to write a single version of the program, we will have to eliminate these type

dependencies:

The definition of the vector in which we store the elements as we read them

The definition of the local temporary into which we read the records

The read function

The grade function

The remaining code is either type independent (the code to sort the vector or to iterate

through it) or it is invariant between the Grad and Core versions (such as the name and

compare functions). Because we defined the grade and read functions as virtuals, we have

already solved the last two parts of our problem.

It turns out that the first two subproblems—what type to use for the local temporary and what

type to store in the container—can be handled by the same strategy. It also turns out that

there are two different approaches to solving these subproblems. The first approach is

straightforward, so we'll look at it in the next section. The other solution represents a common,

important C++ programming idiom, which we'll cover in §13.4/243.

13.3.1 Containers of (virtually) unknown type

The problem that we need to solve is to relax the type dependencies in the following:

vector<Core> students; // must hold Core objects, not polymorphic types

Core record; // Core object, not a type derived from Core

The type dependencies in this code should be fairly clear. When we define record, we say

exactly what type of object record is: It is a Core, because that's what we said it was.

Similarly, when we define students, we say that it is a vector that holds objects of type Core.

We'll have more to say about such containers in §13.6.1/249, but for now what's important is

to realize that when we define a vector<Core>, we are saying that each object in the vector

will be a Core object—not an object of a type derived from Core.

When we outlined the type dependencies in our two programs, we noted that we'd solved half

the type issues because read and grade were virtual functions. The other half of the problem

is that, as written, our programs make statically bound calls to these virtuals. In order to

invoke the dynamic behavior that we need, we need to call read and grade through a pointer

or reference to Core. That way, the type of the object bound can differ from the type of the

pointer or reference. This observation leads us to a solution to all four subproblems: We can

write the program to manage pointers instead of objects. We can have a vector<Core*>, and

we can define record to be a pointer as well. In this way, we can obtain the dynamic behavior

we need, while eliminating the type dependence involved in the definitions of the vector and

our local temporary. Unfortunately, as we shall see, this solution pushes a lot of complexity

onto our users. For example, the obvious try at a solution doesn't work at all:

int main()

{

 vector<Core*> students;

 Core* record;

 while (record->read(cin)) { // crash!

 // ...

 }

}

The trouble with this program is that it fails horribly, because we never caused record to point

to an object!

We can fix this problem, but only by requiring that our users actively manage the space

consumed by the objects that they read from the file. Our users will also have to be able to

detect what kind of records the program is reading. We'll assume that each record will contain

an indicator to distinguish the kind of record that it contains: Records for graduate students

will start with a G, and those for an undergraduate will start with a U.

Before we rewrite the program to use pointers, there is one more problem that we must solve:

How do we sort a vector of pointers? The easy answer is that we'll need a new comparison

function that takes two pointers to Core objects. The tricky part is that we cannot name this

function compare. Recall that in §8.1.3/142 we discussed various subtleties in getting the

right types for values that we pass as template arguments. For similar reasons, we cannot

pass an overloaded function name as a template argument. If we did so, the compiler would

have no way to determine which version of the function we wanted. Evidently, we'll need to

write a comparison function that will give us a non- overloaded name to pass to sort:

bool compare_Core_ptrs(const Core* cp1, const Core* cp2)

{

 return compare(*cp1, *cp2);

}

Having written a specialized comparison function, we can now rewrite the program:

// this code almost works; see §13.3.2/242

int main()

{

 vector<Core*> students; // store pointers, not objects

 Core* record; // temporary must be a pointer as well

 char ch;

 string::size_type maxlen = 0;

 // read and store the data

 while (cin >> ch) {

 if (ch == 'U')

 record = new Core; // allocate a Core object

 else

 record = new Grad; // allocate a Grad object

 record->read(cin); // virtual call

 maxlen = max (maxlen, record->name().size()); // dereference

 students.push_back(record);

 }

 // pass the version of compare that works on pointers

 sort(students.begin(), students.end(), compare_Core_ptrs);

 // write the names and grades

 for (vector<Core*>::size_type i = 0;

 i != students.size(); ++i) {

 // students[i] is a pointer that we dereference to call the functions

 cout << students[i]->name()

 << string(maxlen + 1 - students[i]->name.size(), ' ');

 try {

 double final_grade = students[i]->grade();

 streamsize prec = cout.precision();

 cout << setprecision(3) << final_grade

 << setprecision(prec) << endl;

 } catch (domain_error e) {

 cout << e.what() << endl;

 }

 delete students[i]; // free the object allocated when reading

 }

 return 0;

}

We have noted in comments the many differences between this code and our original. These

changes all result from the fact that we must manipulate pointers and not objects.

The while loop changes to read the first character from the input, which we subsequently test

to determine which kind of record we are about to read. Once we know what kind of object we

need, we allocate an object of the appropriate type, and use that object to read from the

standard input. The read function is virtual, so the right version will be called, depending on

whether record points to a Grad or a Core object. In both cases, read will give the object the

values from the next input record. Note that we must remember to dereference record, which

is a pointer, to access read. The code to calculate the length of the longest name also

changes to dereference the pointer, but otherwise the next few lines of code are unchanged.

When we get to the loop that does output, we have to remember that students[i] yields a

pointer. Once we have fetched students[i], we have a pointer that must itself be dereferenced

to get at the underlying object. As with the call to read, the call to grade is a virtual call, so

the right version of grade is automatically invoked to calculate the grade, including a thesis if

the object is a Grad and not otherwise. The final change is to remember to return to the

implementation the space that the object consumed, which we do by calling delete on the

pointer that students[i] contains.

13.3.2 Virtual destructors

Our program almost works. The only problem occurs when we delete the objects, as we do

inside the output loop. When we allocated these objects, we allocated both Grad and Core

objects, but we stored pointers to these objects as Core*, and not as Grad* pointers. Thus,

when we delete them, we are deleting a pointer to Core, and never a pointer to Grad, even if

the pointer actually points to a Grad object. Fortunately, this problem is easily fixed.

When we call delete on a pointer, two things happen: The destructor is run on the object, and

the space that held the object is freed. When the program deletes the pointer in students[i], it

could be pointing at either a Core object or a Grad object. Neither Core nor Grad explicitly

defined a destructor, which means that when the delete runs, it will invoke the synthesized

destructor and then return the space that the object consumed. The synthesized destructor

will run the destructor for each data element in the class. But when the delete is executed,

which destructor should the system run? Should the destructor destroy the members of a

Core or a Grad? And when the space is freed, how much space should be returned—enough

to hold a Core or a Grad?

These questions sound like the kind that the virtual mechanism can resolve—and indeed it

can. In order to have a virtual destructor, the class must have a destructor, which we can then

make virtual:

class Core {

public:

 virtual ~Core() { }

// as before

};

Now when we execute delete students[i], the destructor that will be run will depend on the

type of object to which students[i] actually points. Similarly, the type of the memory that we

return to the system will be determined by the type to which students[i] actually points.

Note that the body of the destructor is empty. The only work needed to destroy a Core is to

destroy its members, and the system does this work automatically. Empty, virtual destructors

are not uncommon. A virtual destructor is needed any time it is possible that an object of

derived type is destroyed through a pointer to base. If there is no other reason for the

destructor to be defined, then that destructor has no work to do and should be empty.

There is no need to update the Grad class to add a destructor. As with all virtual functions,

the fact that the destructor is virtual is inherited. Because neither class has any explicit work

to do in order to destroy objects, there is no need to redefine the destructor in the derived

class. Because the derived class inherits the virtual property of its base-class destructor, all

we have to do is recompile the program.

13.4 A simple handle class

Although the approach that we have just seen is straightforward, it has problems: The

program has acquired a lot of extra complexity related to managing the pointers, and has

added several pitfalls that could lead to bugs. Our users have to remember to allocate space

for the records as they read them, and to remember to free that space when they no longer

need the data. The code is constantly dereferencing the pointers to get at the underlying

objects. Nevertheless, we have solved the problem of writing a program that can read a file

that contains both kinds of records intermixed.

What we'd like to do is find a way to preserve the good properties of our simpler programs

that dealt with either Core objects or Grad objects, and eliminate the problems inherent in our

new solution, which can process both kinds of records. It turns out that there is a common

programming technique, known as a handle class, that will let us do so.

Our code became cluttered when we realized that we needed to be able to deal with objects

whose type we could not know until run time. We knew that each object would be either a

Core, or something derived from Core. Our solution used pointers, because we could allocate

a pointer to Core and then make that pointer point to either a Core or a Grad object. The

trouble with our solution is that it imposed error-prone bookkeeping on our users. We can't

eliminate that bookkeeping, but we can hide it from our users by writing a new class that will

encapsulate the pointer to Core:

class Student_info {

public:

 // constructors and copy control

 Student_info(): cp(0) { }

 Student_info(std::istream& is): cp(0) { read(is); }

 Student_info(const Student_info&);

 Student_info& operator=(const Student_info&);

 ~Student_info() { delete cp; }

 // operations

 std::istream& read(std::istream&);

 std::string name() const {

 if (cp) return cp->name();

 else throw std::runtime_error("uninitialized Student");

 }

 double grade() const {

 if (cp) return cp->grade();

 else throw std::runtime_error("uninitialized Student");

 }

 static bool compare(const Student_info& s1,

 const Student_info& s2) {

 return s1.name() < s2.name(); }

private:

 Core* cp;

};

The idea here is that a Student_info object can represent either a Core or a Grad. In that

sense, it will act like a pointer. However, users of Student_info do not have to worry about

allocating the underlying object to which the Student_info is bound. The class will take care of

these tedious and error-prone aspects of our programs.

Each Student_info object will hold a pointer, called cp, that points to an object that has either

type Core or a type derived from Core. As we'll see in §13.4.1/245, in the read function we'll

allocate the object to which cp points. Therefore, both constructors initialize cp to 0, indicating

that the Student_info object is as yet unbound. In the constructor that takes an istream, we

call the Student_info::read function. That function will allocate a new object of the appropriate

type, and will give that object the value that it reads from the indicated istream.

We know from the rule of three (§11.3.6/201) that we will need a copy constructor,

assignment operator, and destructor to manage the pointer. The work that the destructor must

do is easy: It just has to destroy the object that the constructors allocated. Because we gave

Core a virtual destructor in §13.3.2/242, the destructor for Student_info will operate correctly

whether the object being destroyed is a Grad object or a Core object. We'll define the copy

constructor and assignment operator in §13.4.2/246.

Because users will write programs in terms of Student_info objects rather than Core or Grad

objects, the Student_info class must provide the same interface as the Core class. For both

name and grade, there is nothing special for Student_info to do, and so these functions

forward their work to the underlying Core or Grad object to which cp points.

However, cp could be 0. It will be 0 if a user creates a Student_info object using the default

constructor, and then does not read into it. If cp is 0, we can't just forward the calls to the

underlying object. Instead, we'll throw a runtime_error to indicate that a problem has

occurred.

It is important to remember that the Core::grade function is virtual, which means that when we

call it through cp, the version that is called at run time will depend on the type of object to

which cp points. For example, if cp points to a Grad object, then we'll run the Grad::grade

operation.

The only other function in the interface is the compare operation, which turns out to have a

couple of interesting properties. First, recall that for the Core classes, compare was a global,

nonmember function, whereas here, we implement it as a static member function. Static

member functions differ from ordinary member functions in that they do not operate on an

object of the class type. Unlike other member functions, they are associated with the class,

not with a particular object. As such, they cannot access the nonstatic data members of

objects of the class: There is no object associated with the function, so there are no members

to use.

For our purposes, static member functions have one significant advantage: Their names are

within the scope of their class. So, when we say that compare is a static member we are

defining a function named Student_info::compare. Because the function has a qualified

name, it does not overload the compare that we used to compare Core objects. Thus, our

users will be able to call sort, passing Student_info::compare, and the compiler can know

which function they want.

The other interesting thing about this function is its implementation. The function uses the

Student_info::name function to get at the names stored in the records. It is worth thinking

about what is happening here. The call to Student_info::name will call Core::name if cp is

set. If cp is 0, then name will throw an exception, which propagates out to compare's caller.

Because compare uses the public interface to Student_info, that function doesn't need to

check cp directly. As with other user-level code, it passes that problem along to the

Student_info class.

13.4.1 Reading the handle

The read function has three responsibilities: It must free the object, if any, to which this

handle is bound. It must then decide what kind of object we are about to read, and it must

allocate the right kind of object, which it can initialize from the stream it was given:

istream& Student_info::read(istream& is) {

 delete cp; // delete previous object, if any

 char ch;

 is >> ch; // get record type

 if (ch == 'U') {

 cp = new Core(is);

 } else {

 cp = new Grad(is);

 }

 return is;

}

The read function starts by freeing the existing object (if any) to which the handle object was

previously bound. We do not need to check whether cp is 0 before calling delete, because

the language guarantees that it is harmless to delete a pointer with value 0. Having freed the

old value, we are ready to read the new one. We start by reading and testing the first

character on the line. Based on that character, we create an object of the appropriate type,

initializing that object by running the appropriate constructor that takes an istream. These

constructors call their own read functions to read values from the input stream into the newly

created object. After the object is constructed, we store the pointer to it in cp. To finish up, we

return the stream that we were given.

13.4.2 Copying handle objects

The copy constructor and assignment operator are necessary to manage the Core pointer.

The constructor allocates this pointer as a side effect of calling read. When we copy a

Student_info, we will want to allocate a new object and initialize it with the values from the

object from which we are copying. However, there is a snag: What kind of object are we

copying? There is no obvious way to know whether the Student_info object that we're

copying points to a Core object or an object of a type derived from Core.

The way we solve this problem is to give Core and its derived classes a new virtual function.

That function creates a new object that holds copies of the values in the original:

class Core {

 friend class Student_info;

protected:

 virtual Core* clone() const { return new Core(*this); }

 // as before

};

The clone function does exactly what we described, in a surprisingly succinct fashion. We

allocate a new Core object and use Core's copy constructor to give that new object the

appropriate values. Remember that the Core class did not explicitly define a copy constructor.

Nonetheless, we know from §11.3.5/201 that one exists: The compiler synthesized a default

copy constructor, which copies each member from the existing Core object into the newly

created one.

Because we created the clone function as an artifact of our implementation, we did not add it

to the public interface of Core. The fact that clone is protected means that we must nominate

Student_info as a friend of Core, so that Student_info objects can access the clone

function. Class friendship is similar to the friend functions that we saw in §12.3.2/216. There,

we learned that friend functions have access to the private and protected members of the

class. Naming a class as a friend has the same effect as making all of the members of that

class friends. That is, by adding

friend class Student_info;

to the definition of Core, we are saying that all the member functions in Student_info may

access all the private and protected members of class Core.

Having added the virtual function clone to the base class, we have to remember to redefine

the function in the derived class, so that when we clone a derived object, we will allocate a

new Grad object:

class Grad {

protected:

 Grad* clone() const { return new Grad(*this); }

 // as before

};

As with Core::clone, we allocate a new object as a copy of *this, but here we return a Grad*

rather than a Core*. Ordinarily, when a derived class redefines a function from the base class,

it does so exactly: the parameter list and the return type are identical.

However, if the base-class function returns a pointer (or reference) to a base class, then the

derived-class function can return a pointer (or reference) to a corresponding derived class.

We do not need to nominate Student_info as a friend of Grad, even though friendship is not

inherited, because our Student_info class never refers to Grad::clone directly; it does so only

through virtual calls to Core::clone, which it can access by virtue of its friendship with Core.

With these changes in place, we can now implement copying and assignment:

Student_info::Student_info(const Student_info& s) : cp(0)

{

 if (s.cp) cp = s.cp->clone();

}

Student_info& Student_info::operator=(const Student_info& s)

{

 if (&s != this) {

 delete cp;

 if (s.cp)

 cp = s.cp->clone();

 else

 cp = 0;

 }

 return *this;

}

In the copy constructor, we initialize the pointer cp to 0, and conditionally call clone if there is

something there to clone. If not, cp will remain equal to 0, indicating that the handle is

unbound. Similarly, the assignment operator calls clone conditionally. Of course, we have

other work to do in the assignment operator before calling clone. First we must guard against

self-assignment, by testing whether the addresses of our two operands are the same. If we

are assigning different objects, then we must free the object to which cp currently points

before making cp point to the newly created object.

Neither the copy constructor nor the assignment operator does anything special if cp is 0,

because it is perfectly legitimate to copy or assign an unbound handle.

13.5 Using the handle class

Having finished the handle class, we can now use it to allow our initial program from §9.6/166

to work with but one change:

int main()

{

 vector<Student_info> students;

 Student_info record;

 string::size_type maxlen = 0;

 // read and store the data

 while (record.read(cin)) {

 maxlen = max(maxlen, record.name().size());

 students.push_back(record);

 }

 // alphabetize the student records

 sort(students.begin(), students.end(), Student_info::compare);

 // write the names and grades

 for (vector<Student_info>::size_type i = 0;

 i != students.size(); ++i) {

 cout << students[i].name()

 << string(maxlen + 1 - students[i].name.size(), ' ');

 try {

 double final_grade = students[i].grade();

 streamsize prec = cout.precision();

 cout << setprecision(3) << final_grade

 << setprecision(prec) << endl;

 } catch (domain_error e) {

 cout << e.what() << endl;

 }

 }

 return 0;

}

The input loop now reads and processes two kinds of records. One kind of record represents

a student who is completing only the core requirements for the course; the other kind

represents a student who wants graduate credit. The loop works because the read function

for Student_info reads either kind of record. That function first reads the character that says

what kind of record we're about to read, and then allocates an object of the appropriate type,

initializing the object from the input stream. It constructs the underlying Core or Grad object

by reading the data, and stores a pointer to the newly created object in record. We copy the

Student_info object into the vector, which copies the object as a side effect of running the

Student_info copy constructor.

The next step is to sort the data, which we do by invoking sort, passing it the

Student_info::compare function. That function calls the base-class name function to

compare the names in the objects.

The output loop remains unchanged. On each trip through the loop, students[i] denotes a

Student_info object. That object contains a pointer to an object that is either a Core or a

Grad. When we call the grade function for Student_info, that function will use the pointer to

call the (virtual) grade function on the underlying object. The type of object to which the

handle points will determine which version to call at runtime.

Finally, the objects that were allocated inside the read for the Student_info function will be

automatically freed when we exit main. On exiting main, the vector will be destroyed. The

destructor for vector will destroy each element in students, which will cause the destructor for

Student_info to be run. When that destructor runs, it will delete each of the objects allocated

in read.

13.6 Subtleties

Although the ideas behind inheritance and dynamic binding are powerful, they can appear

mysterious, at least at first. Now that we've seen examples that use these ideas, let's look at

some of the associated subtleties that often cause trouble.

13.6.1 Inheritance and containers

In section §13.3.1/239, we noted that when we say that we want to store Core objects in a

container, we're saying that the container will hold Core objects and nothing but Core objects.

This assertion might have been surprising: It might seem that we should be able to store Core

objects or objects derived from Core in the container. However, if we think about our own

implementation of Vec from Chapter 11, we know that at some point, the Vec has to allocate

storage for the objects that it contains. When we allocate that storage, we say which exact

type to allocate. There is no virtual-like mechanism that determines what kind of object is

needed and allocates enough space to hold that object.

What may be more surprising is what would happen if we persisted in defining a

vector<Core> into which we intended to place either Core objects or Grad objects. The

answer is that we could do so, but the results would probably be a surprise; for example

vector<Core> students;

Grad g(cin); // read a Grad

students.push_back(g); // store the Core part(!) of g in students

We are allowed to store the Grad object in students, because we can use a Grad object

wherever a reference to a Core object is required. The push_back function takes a reference

to the vector's element type, so we can pass g to push_back. However, when we put the

object into students, only the Core portion of g is copied! As in §13.2.2/235, this behavior is

actually what we asked for, although it can be surprising—especially when encountered for

the first time. What will happen is that push_back will expect that it was given a Core object,

and will construct a Core element, copying only the Core parts of the object, ignoring

whatever is specific to the Grad class .

13.6.2 Which function do you want?

It is important to realize that when a base- and derived-class function have the same name,

but they don't match exactly in number and types of parameters, they behave as if they were

completely unrelated functions. For example, we might add to our hierarchy an accessor

function that we could use to change a student's final exam-grade. For Core students, this

function should set only the final grade; for Grad students, the function should take two

parameters, the second one being used to set the thesis:

void Core::regrade(double d) { final = d; }

void Grad::regrade(double d1, double d2) { final = d1; thesis = d2; }

If r is a reference to a Core, then

r.regrade(100); // ok, call Core::regrade

r.regrade(100, 100); // compile error, Core::regrade takes a single argument

This second call is an error even if r refers to an object of type Grad. The type of r is a

reference to Core, and the version of regrade in Core takes one value of type double. What

may be more surprising is what happens if r is a reference to a Grad:

r.regrade(100); // compile error, Grad::regrade takes two arguments

r.regrade(100, 100); // ok, call Grad::regrade

Now when we look for a function to call, r is a Grad. The regrade function that applies to

Grad objects takes two arguments. Even though there is a base-class version that takes a

single argument, that version is effectively hidden by the existence of regrade in the derived

class. If we want to run the version from the base class, we must call it explicitly:

r.Core::regrade(100); // ok, call Core::regrade

If we want to use regrade as a virtual function, we must give it the same interface in the base

and derived classes, which we can do by giving the Core version an extra, unused parameter

with a default argument:

virtual void Core::regrade(double d, double = 0) { final = d; }

13.7 Details

Inheritance allows us to model classes that are similar to one another with exceptions:

class base {

public:

 // common interface

protected:

 // implementation members accessible to derived classes

private:

 // implementation accessible to only the base class

};

// public interface of base is part of the interface for derived

class derived: public base { ... };

Classes that derive from the base class may redefine operations from the base class and may

add members of their own. Classes can also inherit privately:

class priv_derived: private base { ... };

which is rare and normally is used for implementation convenience only.

An object of a (publicly) derived type can be used where an object, reference, or pointer to a

base class object is expected.

Derivation chains can be several layers deep:

class derived2: public derived { ... };

Objects of type derived2 have a derived part, which in turn has a base part. Thus, derived2

objects have the properties of derived and base class objects.

Derived-class objects are constructed by allocating enough space for the entire object,

constructing the base-class part(s), and then constructing the derived class. Which derived

constructor is run depends, as usual, on the arguments used in creating the derived-class

object. That constructor, through its constructor-initializer list, can pass arguments to be used

when constructing its immediate base class. If the constructor initializer does not explicitly

initialize its base, then the base's default constructor is run.

Dynamic binding refers to the ability to select at run time which function to run based on the

actual type of the object on which the function is called. Dynamic binding is in effect for calls to

virtual functions made through a pointer or a reference. The fact that a function is virtual is

inherited, and need not be repeated in the derived classes.

Derived classes are not required to redefine their virtual functions. If a class does not redefine

a virtual, then it inherits the nearest definition for that function. However, any virtual functions

that the class does contain must be defined. It is often a source of mysterious error messages

from compilers to declare but not define a virtual function.

Overriding: A derived-class member function overrides a function with the same name in the

base class if the two functions have the same number and types of parameters and both (or

neither) are const. In that case, the return types must also match, except that as in

§13.4.2/246, if the base-class function returns a pointer (or reference) to a class, the

derived-class function can return a pointer (or reference) to a derived class. If the argument

lists don't match, the base- and derived-class functions are effectively unrelated.

virtual destructors: If a pointer to the base class is used to delete an object that might

actually be a derived-class object, then the base class needs a virtual destructor. If the class

has no other need for a destructor, then the virtual destructor still must be defined and should

be empty:

class base {

public:

 virtual ~base(){ }

};

As with any other function, the virtual nature of the destructor is inherited by the derived

classes, and there is no need to redefine the destructor in the derived classes.

Constructors and virtual functions: While an object is under construction, its type is the

type of the class that is being constructed—even if the object is part of a derived-class object.

Thus, calls to virtual functions from inside a constructor are statically bound to the version for

the type being constructed.

Class friendship: A class can designate another as its friend; doing so grants friendship to

all the member functions of the other class. Friendship is neither inherited nor transitive;

friends of friends and classes derived from friends have no special privileges.

Static members exist as members of the class, rather than as an instance in each object of

the class. Therefore, the this keyword is not available in a static member function. Such

functions may access only static data members. There is a single instance of each static data

member for the entire class, which must be initialized, usually in the source file that

implements the class member functions. Because the member is initialized outside the class

definition, you must fully qualify the name when you initialize it:

value-type class-name::static-member-name = value;

says that the static member named static-member-name from the class class-name has

type value-type and is given the initial value value.

Exercises

13-0. Compile, execute, and test the programs in this chapter.

13-1. Annotate the Core and Grad constructors to write the constructor's name and argument

list when the constructor is executed. For example, you should add a statement such as

cerr << "Grad::Grad(istream&)" << endl;

to the Grad constructor taking an istream& parameter. Then write a small program that

exercises each constructor. Predict beforehand what the output will be. Revise your program

and predictions until your predictions match what is actually written.

13-2. Given the Core and Grad classes defined in this chapter, indicate which function is

called for each of these invocations:

Core* p1 = new Core;

Core* p2 = new Grad;

Core s1;

Grad s2;

p1->grade();

p1->name();

p2->grade();

p2->name();

s1.grade();

s1.name();

s2.name();

s2.grade();

Check whether you are correct by adding output statements to the name and grade functions

that indicate which function is being executed.

13-3. The class that we built in Chapter 9 included a valid member that allowed users to

check whether the object held values for a student record or not. Add that functionality to the

inheritance-based system of classes.

13-4. Add to these classes a function that will map a numeric grade to a letter grade according

to the grading policy outlined in §10.3/177.

13-5. Write a predicate to check whether a particular student met all the relevant

requirements. That is, check whether a student did all the homework, and if a graduate

student, whether the student wrote a thesis.

13-6. Add a class to the system to represent students taking the course for pass/fail credit.

Assume that such students need not do the homework, but might do so. If they do, the

homework should participate in determining whether they passed or failed, according to the

normal formula. If they did no homework, then the grade is the average of their midterm and

final grades. A passing grade is 60 or higher.

13-7. Add a class to the system to represent students auditing the course.

13-8. Write a program to generate a grade report that can handle all four kinds of students.

13-9. Describe what would happen if the assignment operator in §13.4.2/247 failed to check

for self-assignment.

14

Managing memory (almost) automatically

When we built our Student_info handle class in Chapter 13, we combined two separable

abstractions. Not only was that class an interface to the operations on student records, but it

also managed a pointer to an implementation object. Combining two independent abstractions

into a single class is often a sign of weak design.

What we'd like is to be able to define a class that is similar to Student_info, but that is strictly

an interface class. Such interface classes are common in C++, especially when they interface

to an inheritance hierarchy. We will arrange for our interface class to delegate the

implementation details to another class, which behaves like a pointer but also manages the

underlying memory. Once we have separated the interface class from the pointerlike class,

we should be able to use a single pointerlike class with multiple interface classes.

As we'll see, we can also use classes such as these to improve the performance of programs

that manage memory often. By arranging for several pointerlike objects to refer to a single

underlying object where appropriate, we can avoid copying objects unnecessarily.

Much of this chapter revolves around the answer to a single question: What does it mean to

copy an object? At first glance, this question seems to have an obvious answer: A copy is a

distinct object that has all the properties of the original object. However, the moment it

becomes possible for one object to refer to another, the question becomes more complicated:

If an object x refers to an object y, does copying x cause y to be copied too?

Sometimes the answer to this latter question is obvious: If y is a member of x, the answer

must be yes, and if x is nothing more than a pointer that happens to point to y, the answer is

no. In this chapter we'll define three different versions of our pointerlike class, each of which

differs from the others in how it defines copying.

These questions about copying, and the very idea of a pointerlike class, are fairly abstract

notions. Because we will implement these abstractions, it is not surprising that this chapter is

by far the most abstract in the book. As a result, it is likely to require—and repay—careful

study.

14.1 Handles that copy their objects

Let's think again about the grading problem that we solved in Chapter 13. In solving that

problem, we needed to store and process a collection of objects representing different types

of students. These objects were of one of two types related by inheritance, with the possibility

of more types being added later. Our first solution, in §13.3.1/239, used pointers to let us store

a mixed collection of objects. Each of these pointers might point to a Core object, or to an

object of a type derived from Core. User code was responsible for allocating the objects

dynamically, and for remembering to free them. The program was cluttered with details

related to managing the pointers, and was generally tricky.

The problem is that a pointer is a primitive, low-level data structure. Programming with

pointers is notoriously error prone. Many of the problems with pointers arise because pointers

are independent of the objects to which they point, leading to pitfalls:

Copying a pointer does not copy the corresponding object, leading to surprises if two

pointers inadvertently point to the same object.

Destroying a pointer does not destroy its object, leading to memory leaks.

Deleting an object without destroying a pointer to it leads to a dangling pointer, which

causes undefined behavior if the program uses the pointer.

Creating a pointer without initializing it leaves the pointer unbound, which also causes

undefined behavior if the program uses it.

In §13.5/247, we solved the grading problem again, this time using the Student_info handle

class. Because this class managed the pointers, our users' code dealt with Student_info

objects, rather than with pointers. However, the Student_info class was intimately tied to the

Core hierarchy: It contained operations that mirrored those in the public interface of the Core

classes.

What we want to do now is to separate these abstractions. We'll still use Student_info to

provide the interface, but it will rely on another class to manage the "handle." That is, this

other class will manage the pointers to the implementation objects. The behavior of this new

type can and will be independent of the type of the objects to which the handle can be

attached.

14.1.1 A generic handle class

Because we want our class to be independent of the type of object that it manages, we

already know that our class must be a template. Because we want it to encapsulate the

handle behavior, we will call it Handle. The properties that our class will provide are:

A Handle is a value that refers to an object.

We can copy a Handle object.

We can test a Handle object to determine whether it is bound to another object.

We can use a Handle to trigger polymorphic behavior when it points to an object of a

class that belongs to an inheritance hierarchy. That is, if we call a virtual function

through our class, we want the implementation to choose the function to run

dynamically, just as if we'd called the function through a real pointer.

Our Handle will have a restricted interface: Once you attach a Handle to an object, the

Handle class will take over memory management for that object. Users should attach only

one Handle to any object, after which they should not access the object directly through a

pointer; all access should be through the Handle. These restrictions will allow Handles to

avoid the problems inherent in built-in pointers. When we copy a Handle object, we'll make a

new copy of the object, so that each Handle points to its own copy. When we destroy a

Handle, it will destroy the associated object, and doing so will be the only straightforward way

to free the object. We'll allow users to create unbound Handles, but we will throw an

exception if the user attempts to access the object to which an unbound Handle refers (or,

more accurately, doesn't refer). Users who want to avoid the exception can test to see

whether the Handle is bound.

These properties are like the ones that we implemented in the Student_info class. The

Student_info copy constructor and assignment operator called clone to copy the associated

Core object. The Student_info destructor destroyed the Core object as well. The operations

that used the underlying object checked before doing so to ensure that the Student_info was

bound to a real object. What we want is a class that encapsulates this behavior, but that we

can use to manage an object of any type:

template <class T> class Handle {

public:

 Handle(): p(0) { }

 Handle(const Handle& s): p(0) { if (s.p) p = s.p->clone(); }

 Handle& operator=(const Handle&);

 ~Handle() { delete p; }

 Handle(T* t): p(t) { }

 operator bool() const { return p; }

 T& operator*() const;

 T* operator->() const;

private:

 T* p;

};

The Handle class is a template class, so that we can create Handles that refer to any type.

Each Handle<T> object holds a pointer to an object; the other operations manage this

pointer. Aside from variable-name changes, the first four functions are identical to their

versions in Student_info. The default constructor sets the pointer to zero to indicate that the

Handle is unbound. The copy constructor (conditionally) calls the associated object's clone

function to create a new copy of the object. The Handle destructor frees the object. The

assignment operator, like the copy constructor, (conditionally) calls clone to create a new

copy of the object:

template<class T>

Handle<T>& Handle<T>::operator=(const Handle& rhs)

{

 if (&rhs != this) {

 delete p;

 p = rhs.p ? rhs.p->clone() : 0;

 }

 return *this;

}

The assignment operator, as usual, starts by checking for self-assignment, doing nothing if

the test succeeds. If the test fails, we continue by freeing the object that we had been

managing, and then making a copy of the right-hand object. The statement that does the copy

uses the conditional operator (§3.2.2/45) to decide whether it's safe to call clone. If rhs.p is

set, we call rhs.p->clone and assign the resulting pointer to p. Otherwise, we set p to 0.

Because Handle models pointer behavior, we need a way to bind the pointer to an actual

object, which we do in the constructor that takes a T*. That constructor remembers the

pointer that it was given, thus binding the Handle to the object to which t points. For example,

if we define

Handle<Core> student(new Grad);

we construct a Handle object named student that contains a Core* pointer, which we initialize

to point to the object of type Grad that we just created:

Finally, we define three operator functions. The first of these, operator bool() lets users test

the value of a Handle in a condition. The operation returns true if the Handle is bound to an

object, and false otherwise. The other two define operator* and operator->, which give

access to the object bound to the Handle:

template <class T>

T& Handle<T>::operator*() const

{

 if (p)

 return *p;

 throw runtime_error("unbound Handle");

}

template <class T>

T* Handle<T>::operator->() const

{

 if (p)

 return p;

 throw runtime_error("unbound Handle");

}

Applying the built-in unary * operator to a pointer yields the object to which the pointer points.

Here we define our own *, so that * of a Handle object yields the value that results from

applying the built-in * operator to the pointer member of that Handle object. Given our

student object, *student will yield the result of applying * to student.p (assuming we could

access the p member). In other words, the result of *student will be a reference to the Grad

object that we created when we initialized student.

The -> operator is a bit more complicated. Superficially, -> looks like a binary operator, but in

fact it behaves differently from ordinary binary operators. Like the scope or dot operators, the

-> operator is used to access a member whose name appears in its right operand from an

object named by its left operand. Because names are not expressions, we have no direct

access to the name that our user requested. Instead, the language requires that we define ->

to return a value that can be treated as a pointer. When we define operator->, we are saying

that if x is a value of type that defines operator-> then

x->y

is equivalent to

(x.operator->())->y

In this case, operator-> returns the pointer that its object holds. So for student,

student->y

is equivalent to

(student.operator->())->y

which, because of the way we defined operator->, is equivalent to

student.p->y

(ignoring the fact that protection would not ordinarily allow us to access student.p directly).

Thus, the -> operator has the effect of forwarding calls made through a Handle object to the

underlying pointer that is a member of the Handle object.

One of our objectives was for Handle to preserve the polymorphic behavior associated with

built-in pointers. Having seen the definitions of operator* and operator->, we can see that we

have reached our goal. These operations yield either a reference or a pointer, through which

we obtain dynamic binding. For example, if we execute student->grade() , we're calling

grade through the p pointer inside student. The particular version of grade that is run

depends on the type of the object to which p points. Assuming that student still points to the

Grad object with which it was initialized, this call would be to Grad::grade. Similarly, because

operator* yields a reference, if we evaluate (*student).grade(), then we are calling grade

through a reference, and so the implementation will decide which particular function to call at

run time.

14.1.2 Using a generic handle

We could use Handles to rewrite the pointer-based grading program from §13.3.1/241:

int main()

{

 vector< Handle<Core> > students; // changed type

 Handle<Core> record; // changed type

 char ch;

 string::size_type maxlen = 0;

 // read and store the data

 while (cin >> ch) {

 if (ch == 'U')

 record = new Core; // allocate a Core object

 else

 record = new Grad; // allocate a Grad object

 record->read(cin); // Handle<T>::->, then virtual call to read

 maxlen = max(maxlen, record->name().size()); // Handle<T>::->

 students.push_back(record);

 }

 // compare must be rewritten to work on const Handle<Core>&

 sort(students.begin(), students.end(), compare_Core_handles);

 // write the names and grades

 for (vector< Handle<Core> >::size_type i = 0;

 i != students.size(); ++i) {

 // students[i] is a Handle, which we dereference to call the functions

 cout << students[i]->name()

 << string(maxlen + 1 - students[i]->name.size(), ' ');

 try {

 double final_grade = students[i]->grade();

 streamsize prec = cout.precision();

 cout << setprecision(3) << final_grade

 << setprecision(prec) << endl;

 } catch (domain_error e) {

 cout << e.what() << endl;

 }

 // no delete statement

 }

 return 0;

}

This program stores Handle<Core> objects instead of Core* objects and so, as we did in

§13.3.1/240, we'll need to write a non-overloaded comparison operation that operates on

const Handle<Core>& that we can pass to sort. We leave the implementation as an

exercise, but assume that it is named compare_Core_handles.

The only other differences are in the output loop. Dereferencing students[i] yields a Handle,

which has an operator-> that we use to access the name and grade functions through the

underlying Core*. For example, students[i]->grade() uses the overloaded ->, so it effectively

calls students[i].p->grade(). Because grade is virtual, we'll run the version that is appropriate

to the type of the object to which students[i].p points. Moreover, because Handle takes care

of memory management for us, we no longer need to delete the objects to which the

elements of students refer.

More important, we can also reimplement Student_info, which can now become a pure

interface class, delegating the work of managing pointers to Handle:

class Student_info {

public:

 Student_info() { }

 Student_info(std::istream& is) { read(is); }

 // no copy, assign, or destructor: they're no longer needed

 std::istream& read(std::istream&);

 std::string name() const {

 if (cp)

 return cp->name();

 else throw runtime_error("uninitialized Student");

 }

 double grade() const {

 if (cp) return cp->grade();

 else throw runtime_error("uninitialized Student");

 }

 static bool compare(const Student_info& s1,

 const Student_info& s2) {

 return s1.name() < s2.name();

 }

private:

 Handle<Core> cp;

};

In this version of Student_info, cp is a Handle<Core> rather than a Core*. Therefore, we no

longer need to implement the copy-control functions, because the Handle manages the

underlying object. The other constructors operate as before. The name and grade functions

look the same, but their execution relies on the conversion to bool, which is invoked in the

test on cp and in the overloaded operator-> from the Handle class, which is used to get at

the functions on the underlying objects.

To complete our reimplementation, we need to write the read function:

istream& Student_info::read(istream& is)

{

 char ch;

 is >> ch; // get record type

 // allocate new object of the appropriate type

 // use Handle<T>(T*) to build a Handle<Core> from the pointer to that object

 // call Handle<T>::operator= to assign the Handle<Core> to the left-hand side

 if (ch == U')

 cp = new Core(is);

 else

 cp = new Grad(is);

 return is;

}

This code looks like the earlier Student_info::read function, but its execution is quite different.

Most obviously, the delete statement is gone, because the assignment to cp will free the

object if appropriate. To understand this code, we need to trace through it carefully. For

example, when we execute new Core(is), we get a Core* object, which we implicitly convert

to a Handle<Core> using the Handle(T*) constructor. That Handle value is then assigned to

cp using the Handle assignment operator, which automatically deletes the object, if any, to

which the Handle previously referred. This assignment constructs and destroys an extra copy

of the Core object that we created, a copy that we will now see how to avoid.

14.2 Reference-counted handles

At this point, we have achieved our goal of separating the work of managing pointers from our interface class. We can use

Handles to implement a wide variety of interface classes, none of which would have to worry about memory management.

However, our Handle class still has the problem that copying or assigning objects copies the underlying data, even when it

does not need to do so. The reason being that Handle always copies the object to which the Handle is bound.

In general, we would like to be able to decide whether we want to make such copies. For example, we might want objects

that are copies of one another to share their underlying information. Such classes do not need or want valuelike behavior.

Other classes may not have any way of changing state once an object is created. In such cases, there is no reason to copy

the underlying object. Copying such objects would waste time and space. To support these kinds of classes, we'd like a kind

of Handle that does not copy the underlying object when the Handle itself is copied. Of course, if we allow multiple

Handles to be bound to the same underlying object, we'll still need to free that object at some point. The obvious point at

which to free the object is when the last Handle that points to it goes away.

To this end, we will use a reference count, which is an object that keeps track of how many objects refer to another object.

Each target object will have a reference count associated with it. We will arrange to increment the reference count each time

we create a new handle that refers to our target object, and to decrement the reference count each time a referring object

goes away. When the last referring object goes away, the reference count will become zero. At that point we'll know that it is

safe to destroy the target object.

This technique can save a lot of unneeded memory management and copying of data. We'll first build a new class, called

Ref_handle, which will show how to add reference counts to our Handle class. Then, in the next two sections, we'll

explore how reference counting can help us define classes that behave like values while sharing representations.

To add reference counting to a class, we have to allocate a counter, and change the operations that create, copy, and

destroy the objects so that they update the counter appropriately. Each object to which we have a Ref_handle will have a

reference count associated with it. The only question is where to store the counter. In general, we don't own the source code

for the types from which we want to make Ref_handles, so we can't just add the counter to the object class type itself.

Instead, we'll add another pointer to our Ref_handle class to keep track of the count. Each object to which we have

attached a Ref_handle will also have an associated reference count that tracks how many copies we have made of that

object:

template <class T> class Ref_handle {

public:

 // manage reference count as well as pointer

 Ref_handle(): refptr(new size_t(1)), p(0) { }

 Ref_handle(T* t): refptr(new size_t(1)), p(t) { }

 Ref_handle(const Ref_handle& h): refptr(h.refptr), p(h.p)

 {

 ++*refptr;

 }

 Ref_handle& operator=(const Ref_handle&);

 ~Ref_handle();

 // as before

 operator bool() const { return p; }

 T& operator*() const

 {

 if (p)

 return *p;

 throw std::runtime_error("unbound Ref_handle");

 }

 T* operator->() const {

 if (p)

 return p;

 throw std::runtime_error("unbound Ref_handle");

 }

private:

 T* p;

 size_t* refptr; // added

};

We have added a second data member to our Ref_handle class, and updated the constructors to initialize that new

member. The default constructor and the constructor that takes a T* create new Ref_handle objects, so they allocate a

new reference count (of type size_t) and set the value of that counter to 1. The copy constructor doesn't create a new

object. Instead, it copies the pointers from the Ref_handle<T> object that it was passed, and increments the reference

count to indicate that there is one more pointer to the T object than there was previously. Thus, the new Ref_handle<T>

object points to the same T object, and to the same reference count, as the Ref_handle<T> object from which we copy.

So, for example, if X is a Ref_handle<T> object, and we create Y as a copy of X, then the situation looks like this:

The assignment operator also manipulates the reference count instead of copying the underlying object:

template<class T>

Ref_handle<T>& Ref_handle<T>::operator=(const Ref_handle& rhs)

{

 ++*rhs.refptr;

 // free the left-hand side, destroying pointers if appropriate

 if (--*refptr == 0) {

 delete refptr;

 delete p;

 }

 // copy in values from the right-hand side

 refptr = rhs.refptr;

 p = rhs.p;

 return *this;

}

As always, it is important to protect against self-assignment, which we do by incrementing the reference count of the

right-hand side before decrementing the reference count of the left-hand side. If both operands refer to the same object, the

net effect will be to leave the reference count unchanged, while ensuring that it will not reach zero unintentionally.

If the reference count goes to zero when we decrement it, then the left operand is the last Ref_handle bound to the

underlying object. Because we are about to obliterate the value of the left operand, we are about to delete the last

reference to that object. Therefore, we must delete the object, and its corresponding reference count before we overwrite

the values in refptr and p. We delete both p and refptr because both were dynamically allocated objects; thus, we must

free them to avoid a memory leak.

Having deleted the pointers, if needed, we then copy the values from the right-hand side into the left-hand side and, as

usual, return a reference to the left operand.

The destructor, like the assignment operator, checks whether the Ref_handle object being destroyed is the last one bound

to its T object. If so, the destructor deletes the objects to which the pointers point:

template<class T> Ref_handle<T>::~Ref_handle()

{

 if (--*refptr == 0) {

 delete refptr;

 delete p;

 }

}

This version of Ref_handle works well for classes that can share state between copies of different objects, but what about

classes, such as Student_info, that want to provide valuelike behavior? For example, if we used the Ref_handle class

to implement Student_info, then after executing, say,

Student_info s1(cin); // initialize s1 from the standard input

Student_info s2 = s1; // "copy" that value into s2

the two objects s1 and s2 would refer to the same underlying object, even though it might appear that s2 is a copy of s1. If

we do anything to change the value of one of these objects, we change the value of the other as well.

Our original Handle class defined in §14.1.1/255 provided valuelike behavior because it always copied the associated

object by calling clone. It should be easy to see that our new Ref_handle class never calls clone at all. Because

Ref_handle never calls clone, handles of this type never copy the objects to which they are attached. On the other hand,

this version of Ref_handle certainly has the advantage of avoiding needless copying of data. The trouble is that it does so

by avoiding all copying, needless or not. What can we do?

14.3 Handles that let you decide when to share data

So far, we have seen two possible definitions for our generic handle class. The first version

always copies the underlying object; the second never does so. A more useful kind of handle

is one that lets the program that uses it decide when it wants to copy the target object and

when it doesn't. Such a handle class preserves the performance of Ref_handle, and allows

the class author to provide the valuelike behavior of Handles. Such a handle will preserve the

useful properties of built-in pointers, but avoids many of the pitfalls. Thus, we'll call this final

handle class Ptr, to capture the notion that it is a useful substitute for built-in pointers. In

general, our Ptr class will copy the object if we are about to change its contents, but only if

there is another handle attached to the same object. Fortunately, the reference count gives us

a way to tell whether our handle is the only one attached to its object.

The fundamentals of our Ptr class are the same as the Ref_handle class that we developed

in §14.2/260. All we need to do is to add one more member function to that class to give

control to the user:

template<class T> class Ptr {

public:

 // new member to copy the object conditionally when needed

 void make_unique() {

 if (*refptr != 1) {

 --*refptr;

 refptr = new size_t(1);

 p = p ? p->clone() : 0;

 }

 }

 // the rest of the class looks like Ref_handle except for its name

 Ptr(): refptr(new size_t(l)), p(0) { }

 Ptr(T* t): refptr(new size_t(l)), p(t) { }

 Ptr(const Ptr& h): refptr(h.refptr), p(h.p) { ++*refptr; }

 Ptr& operator=(const Ptr&) ; // implemented analogously to §14.2/261

 ~Ptr(); // implemented analogously to §14.2/262

 operator bool() const { return p; }

 T& operator*() const;, // implemented analogously to §14.2/261

 T* operator->() const; // implemented analogously to §14.2/261

private:

 T* p;

 size_t* refptr;

};

This new make_unique member does just what we want: If the reference count is 1, it does

nothing; otherwise, it uses the clone member of the object to which the handle is bound to

make a copy of that object, and sets p to point to the copy. If the reference count is not 1,

there must be at least one other Ptr that refers to the original object. We therefore decrement

the reference count associated with the original (which might reduce it to 1 but not to 0). We

then create a new reference count for our handle, and for others that might be created in the

future as copies of it. Because so far there is only one Ptr attached to the copy that we're

makings we initialize the counter to 1. Before calling clone, we check whether the pointer to

the object from which we're copying is bound to an actual object. If so, we call the clone

function to copy that object. When we're done, we'll know that this Ptr is the only one that is

attached to the object to which p points. That object is either the same one as before (if the

original reference count was one) or a copy of it (if the reference count was greater than one).

We can use this latest revision of Ptr in the handle-based Student_info implementation in

§14.1.2/258. When we do, we'll discover that we don't need to change this implementation of

Student_info at all, because none of our operations changes the value of the object without

also replacing it. The only Student_info operation that changes the value is the read function,

but that function always assigns a newly created value to its Ptr member. When it does so,

the Ptr assignment operator will either free the old value or keep it around, depending on

whether there are other objects that refer to the old value. In either case, the object into which

we read will have a new Ptr object and will, therefore, be the only user of that object. If our

users write code such as

Student_info s1;

read(cin, s1); // give s1 a value

Student_info s2 = s1; // copy that value into s2

read(cin, s2); // read into s2; changes only s2 and not s1

then the value of s2 is reset in the read call, but the value of s1 is unchanged.

On the other hand, had we added the virtual version of the regrade function described in

§13.6.2/249 to the Core hierarchy, and given Student_Info a corresponding interface

function, then that function would need to change to call make_unique:

void Student_info::regrade(double final, double thesis)

{

 // get our own copy before changing the object

 cp.make_unique();

 if (cp)

 cp->regrade(final, thesis);

 else throw run_time_error("regrade of unknown student");

}

14.4 An improvement on controllable handles

Useful as our controllable handle might be, it doesn't quite do all we want. For example,

suppose we want to use it to reimplement the Str class from Chapter 12. As we saw in

§12.3.4/219, we implicitly copy a lot of characters to form the new Strs that result from

concatenating two existing Str objects. By reference-counting the Str class, we might think

that we can avoid at least some of these copies:

// does this version work?

class Str {

 friend std::istream& operator>>(std::istream&, Str&);

public:

 Str& operator+=(const Str& s) {

 data.make_unique();

 std::copy(s.data->begin(), s.data->end(),

 std::back_inserter(*data));

 return *this;

 }

 // interface as before

 typedef Vec<char>::size_type size_type;

 // reimplement constructors to create Ptrs

 Str(): data(new Vec<char>) { }

 Str(const char* cp): data(new Vec<char>) {

 std::copy(cp, cp + std::strlen(cp),

 std::back_inserter(*data));

 }

 Str(size_type n, char c): data(new Vec<char>(n, c)) { }

 template<class In> Str(In i, In j): data(new Vec<char>) {

 std::copy(i, j, std::back_inserter(*data));

 }

 // call make_unique as necessary

 char& operator[](size_type i) {

 data.make_unique();

 return (*data)[i];

 }

 const char& operator[](size_type i) const { return (*data)[i]; }

 size_type size() const { return data->size(); }

private:

 // store a Ptr to a vector

 Ptr< Vec<char> > data;

};

// as implemented in §12.3.2/216 and §12.3.3/219

std::ostream& operator<<(std::ostream&, const Str&);

Str operator+(const Str&, const Str&);

We have preserved the interface to Str, but we have fundamentally changed the

implementation. Instead of holding a vector directly in each Str object, we store a Ptr to the

vector. This design allows multiple Strs to share the same underlying character data. The

constructors initialize this Ptr by allocating a new vector initialized with the appropriate values.

The code for the operations that read, but do not change, data are unchanged from our

previous version. Of course, these operations now operate on a Ptr, so there is an indirection

through the pointer stored in the Ptr to get at the underlying characters that make up the Str.

The interesting operations are the ones that change the Str, such as the input operator, the

compound concatenation operator, and the nonconst version of the subscript operator.

For example, look at the implementation of Str::operator+=. It wants to append data to the

underlying vector, so it calls data.make_unique(). Once it has done so, the Str object has its

own copy of the underlying data, which it can modify freely.

14.4.1 Copying types that we can't control

Unfortunately, the definition of make_unique has a serious problem:

template<class T>

void Ptr<T>::make_unique()

{

 if (*refptr != 1) {

 --*refptr;

 refptr = new size_t(1);

 p = p ? p->clone() : 0; // here is the problem

 }

}

Look at the call to p->clone. Because we are using a Ptr< vector<char> >, this call will try to

call the clone function that is a member of vector<char>. Unfortunately, no such function

exists!

Yet the clone function has to be a member of the class to which we are attaching a Ptr,

because only in that way can it be a virtual function. In other words, making clone a member

is critically important to making it possible for Ptr to work across all members of an inheritance

hierarchy; yet doing so is impossible, because we can't change the definition of the Vec class.

That class is designed to implement a subset of the interface to the standard vector class. If

we add a clone member, we'll no longer have a subset because we'll have added a member

that vector does not have. What can we do?

Solutions to tough problems such as this one often involve what we jokingly call the

fundamental theorem of software engineering: All problems can be solved by introducing an

extra level of indirection. The problem is that we are trying to call a member function that does

not exist, and we have no way to cause the member function to exist. The solution, then, is

not to call the member function directly but to define an intermediary global function that we

can both call and create. We will still call this new function clone

template<class T> T* clone(const T* tp)

{

 return tp->clone();

}

and change our make_unique member to call it

template<class T>

void Ptr<T>::make_unique()

{

 if (*refptr != 1) {

 --*refptr;

 refptr = new size_t(1);

 p = p ? clone(p): 0; // call the global (not member) version of clone

 }

}

It should be clear that introducing this intermediary function does not change the behavior of

make_unique. It still calls clone, which still calls the clone member of the object that is being

copied. However, make_unique now works through a level of indirection:

It calls the nonmember clone function, which in turn calls the clone member for the object to

which p points. For classes such as Student_info that define clone, this indirection buys us

nothing. But for classes such as Str that hold Ptrs to types that do not provide a clone

function, the indirection is exactly what we need to make the whole thing work. For these latter

types, we can define yet another intermediary function:

// the key to making Ptr< Vec<char> > work

template<>

Vec<char>* clone(const Vec<char>* vp)

{

 return new Vec<char>(*vp);

}

The use of template<> at the beginning of this function indicates that the function is a

template specialization. Such specializations define a particular version of a template

function for the specific argument type. By defining this specialization, we are saying that

clone behaves differently when we give it a pointer to a Vec<char> than it behaves when we

give it any other pointer type. When we pass clone a Vec<char>* argument, the compiler will

use this specialized version of clone. When we pass other types of pointers, it will instantiate

the general template form of clone, which calls the member clone for the pointer that it was

passed. Our specialized version uses the Vec<char> copy constructor to construct a new

Vec<char> from the one that we gave it. It is true that this specialization of clone does not

offer virtual behavior, but we do not need it to do so because there are no classes derived

from Vec.

What we have done, then, is to moderate our reliance on the clone member by recognizing

that the member might not exist. By introducing the extra indirection, we have made it

possible to specialize the clone template to do whatever is appropriate to copy an object of a

particular class, be it to use a clone member, to call a copy constructor, or something else

entirely. In the absence of a specialization, the Ptr class will use the clone member, but it will

do so only if there is a call to make_unique. In other words

If you use Ptr<T> but you don't use Ptr<T>::make_unique, then it doesn't matter

whether T::clone is defined.

If you use Ptr<T>::make_unique, and T::clone is defined, make_unique will use

T::clone.

If you use Ptr<T>::make_unique, and you don't want to use T::clone (perhaps

because it doesn't exist), you can specialize clone<T> to do whatever you want.

The extra indirection has made it possible to control the behavior of Ptr in great detail. All that

remains is the hard part—deciding what you wanted to do in the first place.

14.4.2 When is a copy necessary?

One last part of this example is worth reviewing in detail. Look back at the definitions of the

two versions of operator[]. One of them calls data.make_unique; the other doesn't. Why the

difference?

The difference relates to whether the function is a const member. The second version of

operator[] is a const member function, which means that it promises not to change the

contents of the object. It keeps this promise by returning a const char& to its caller. Therefore,

there is no harm in sharing its underlying Vec<char> object with other Str objects. After all,

the user can't use the value obtained to change the value of the Str.

In contrast, the first version of operator[] returns a char&, which means that a user could use

this return value to change the contents of the Str. If the user does so, we want to limit the

change to this Str and not propagate the change to any other Strs that might happen to share

the underlying Vec. We defend against the possibility of changing the value of any other Str

objects by calling make_unique on the Ptr before returning a reference to a character of the

Vec.

14.5 Details

Template specializations look like the template definitions that they are specializing, but they

omit one or more of the type parameters, replacing them with specific types instead. The

myriad uses of template specializations are beyond the scope of this book, but you should

know that they exist, and that they are useful for making decisions about types during

compilation.

Exercises

14-0. Compile, execute, and test the programs in this chapter.

14-1. Implement the comparison operation that operates on Ptr<Core>.

14-2. Implement and test the student grading program using Ptr<Core> objects.

14-3. Implement the Student_info class to use the final version of Ptr, and use that version to

implement the grading program from §13.5/247.

14-4. Reimplement the Str class to use the final version of Ptr.

14-5. Test the reimplemented Str class by recompiling and rerunning programs that use Str,

such as the version of split and the picture operations that use a Vec<Str>.

14-6. The Ptr class really solves two problems: maintaining reference counts, and allocating

and deallocating objects. Define a class that does reference counting and nothing else; then

use that class to reimplement the Ptr class.

15

Revisiting character pictures

Inheritance is most useful in modeling large, complex systems, which are well beyond the

scope of any introductory book. One of the reasons that we are so fond of the character-

picture example that we introduced in §5.8/91 is that such pictures lend themselves to an

object-oriented solution, yet we can implement them in only a few hundred lines of code. We

have used this example for many years, refining our code and simplifying the presentation. In

reviewing the example for this book, we were able to remove nearly half the code by using the

standard library and our generic handle class from Chapter 14.

In §5.8/91, we wrote several functions that represented a character picture as a

vector<string>, a strategy that entailed copying characters whenever we constructed a new

picture. Copying all those characters wastes time and space. For example, if we were to

concatenate two copies of a picture, we would then store three copies of each character: one

for the original, and one for each side of the newly concatenated picture.

Even more important, the solution in §5.8/91 discards all structural information about the

pictures. We have no idea how a given picture was formed. It might have been the initial input

from our user, or it might have been created by applying one or more operations to simpler

pictures. Some potentially useful operations require preserving a picture's structure. For

example, if we want to be able to change the frame characters in a picture, we can do so only

if we know which components of a picture were framed and which ones were not. We cannot

look only for instances of the frame characters, because these characters might,

coincidentally, have been part of an initial input picture.

As we'll see in this chapter, by using inheritance and our generic handle class, we will be able

to preserve the structural information inherent in a picture, while at the same time reducing the

space consumption of our system dramatically.

15.1 Design

We are trying to solve two distinct problems. One is a design problem—we'd like to keep structural information about how a

picture was created. The other is an implementation problem—we want to store fewer copies of the same data. Both

problems result from our decision to store a picture as a vector<string>, so we must revisit that decision.

We can solve the implementation problem by managing our data with the Ptr class that we developed in Chapter 14. That

class will let us store the actual character data in a single object, and then arrange for multiple pictures to share that same

object. For example, if we frame a given picture, we will no longer have to copy the characters of the picture that we're

framing. Instead, class Ptr will manage a reference count associated with the data, which will indicate how many other

pictures are using those data.

The design problem is harder to solve. Each picture that we create has a structure, which we want to retain. We form a

picture either from an initial collection of characters, or through one of three operations: frame, to produce a framed picture;

and hcat or vcat, to create pictures that are concatenated horizontally or vertically.

In other words, we have four similar kinds of pictures. Despite their similarity, we create them differently, and we would like to

keep track of the differences.

15.1.1 Using inheritance to model the structure

Our problem is a perfect match for inheritance: We have various kinds of data structures that are similar to one another, but

that differ in ways that we sometimes want to take into account. Each of our data structures is a kind of picture, which

implies that inheritance is a sensible way to represent these data structures. We can define a common base class that

models the common properties of every kind of picture, and then derive from that base class a separate class for each

specific kind of picture that we want to support.

We'll call the derived classes String_Pic, for pictures created from strings that our user gives us; Frame_Pic, for a

picture created by framing another picture; and HCat_Pic and VCat_Pic, for pictures that are the result of concatenating

two other pictures horizontally or vertically respectively. By relating these classes through inheritance, we can use virtual
functions to write code that doesn't always need to know the precise kind of picture on which it is operating. That way, our

users can still use any of our operations without knowing which kind of picture is being manipulated. We will derive each of

these classes from a common base class, which we shall call Pic_base, resulting in the following inheritance hierarchy:

The next question to resolve is whether to make the inheritance hierarchy visible to our users. There seems to be little

reason to do so. None of our operations deals with specific kinds of pictures; instead, they all deal with the abstract notion of

a picture. So, there is no need to expose the hierarchy. Moreover, because we intend to use a reference- counting strategy,

our users will find it more convenient if we hide the inheritance and associated reference counting.

Instead of making our users deal directly with Pic_base and its associated derived classes, we'll define a picture-specific

interface class. Our users will access that class, freeing them from having to be aware of any of our implementation's details.

In particular, using an interface class will hide the inheritance hierarchy, along with the fact that our class relies on Ptr.

Apparently, then we'll need to define six classes: the interface class, the base class for our inheritance hierarchy, and the

four derived classes. We'll call the interface class Picture. Internally, Picture will use a Ptr to manage its data.

What kind of Ptr? That is, what type of objects will the Ptr manage? It will manage our implementation class, Pic_base.

Thus, class Picture will have a single data member, which will have type Ptr<Pic_base>.

We said that we intend to conceal our use of Pic_base and its related hierarchy, so that users will manipulate these

objects only indirectly through class Picture, and will not access any of these classes directly. It turns out that the most

straightforward way to hide these classes is to rely on the normal protection mechanisms. By giving these classes an empty

public interface, we can let the compiler enforce our decision that all interactions with our pictures will be through class

Picture.

To make these decisions concrete, let's write code that captures what we know so far:

// private classes for use in the implementation only

class Pic_base { };

class String_Pic: public Pic_base { };

class Frame_Pic: public Pic_base { };

class VCat_Pic: public Pic_base { };

class HCat_Pic: public Pic_base { };

// public interface class and operations

class Picture {

public:

 Picture(const std::vector<std::string>& =

 std::vector<std::string>());

private:

 Ptr<Pic_base> p;

};

Each Picture object will hold a (private) Ptr<Pic_base> object. Class Pic_base is the common base class for the four

classes that will represent our four kinds of pictures. The Ptr class will manage the reference counts to allow us to share the

underlying Pic_base objects. We will implement each operation on a Picture by forwarding that operation through the Ptr
to the underlying derived-class object. We haven't thought yet about what these operations will be, so for now we've left the

bodies of Pic_base and its derived classes empty.

So far, the Picture class is pretty simple: The only operation is to create a Picture from a vector of strings. We use a

default argument (§7.3/127) to make that vector optional. If a user constructs a Picture with no argument, then the

compiler will supply vector<string>() as an argument automatically, which yields a vector<string> with no elements.

Therefore, the effect of the default argument is to allow us to use a definition such as

Picture p; // an empty Picture

to create a Picture with no rows.

Next, we need to think about how to represent our other Picture operations. We know that we want to implement frame,

hcat, and vcat. What we must decide is how to do so, and whether these operations should be members of class Picture.

The operations do not change the state of the Picture on which they operate, so there is no strong reason to make them

members. Moreover, there is a strong reason not to do so: As we saw in §12.3.5/220, by making them nonmembers we can

allow conversions.

For example, because the Picture constructor that we have already written is not explicit, users will be able to write

vector<string> vs;

Picture p = vs;

and the implementation will convert vs into a Picture for us. If we wish to allow this behavior—and we do—then we should

also allow users to write expressions such as frame(vs). If frame were a member, then users would not be able to write

the seemingly equivalent vs.frame(). Remember that conversions are not applied to the left operand of the . operator, so

this call would be interpreted as invoking the (nonexistent) frame member of vs.

Moreover, we believe that our users will find it convenient to use an expression syntax to build up complicated pictures. We

consider it clearer to write,

hcat(frame(p), p)

than to write

p.frame().hcat(p)

because the first example reflects the symmetry of hcat's arguments and the second example conceals it.

In addition to the functions that let us build Pictures, we will want to define an output operator that can write the contents of

a Picture. These decisions let us flesh out the rest of our interface design:

Picture frame(const Picture&);

Picture hcat(const Picture&, const Picture&);

Picture vcat(const Picture&, const Picture&);

std::ostream& operator<<(std::ostream&, const Picture&);

15.1.2 The Pic_base class

The next step in our design is to fill in the details of the Pic_base hierarchy. If we look back at our initial implementation,

we'll see that we used the vector<string>::size function to determine how many strings were in a given picture, and we

wrote a separate width function (§5.8/91), which proved useful in padding the output. When we think about how we will

display a picture, we see that we are likely to need to be able to perform these same operations on our classes that are

derived from Pic_base. These operations will need to be virtual, so that we can ask any kind of Pic_base how many

rows it has and how wide its widest row is. Furthermore, because our users will use the output operator to write the contents

of a particular Pic_base, we can infer that we'll need another virtual function to display a given Pic_base on a given

ostream.

The only one of these operations that needs significant insight is display. It is easy to decide that one of the parameters to

display should be the stream on which to write its output, but figuring out what other parameters display might take

requires that we think carefully about how it will operate. When we write a Picture, that Picture will comprise one or more

component parts, each of which is an object of a class derived from Pic_base. If we think about writing a horizontally

concatenated picture, it will be apparent that each row of the output from a single Picture might involve writing the

corresponding row for more than one subpicture. In particular, we cannot write the entire contents of one subpicture, and

then the entire contents of the other. Instead, we have to write the contents of each subpicture a row at a time, interleaved

with the corresponding rows of the other subpictures. We can conclude, therefore, that the display function needs a

parameter that says which row to write.

Similarly, when we display the left-hand part of a horizontally concatenated picture, we'll need to tell the corresponding

subpicture to pad each row to use the full width() of itself on each line. We'll also need to tell a picture that is contained

within a Frame_Pic to pad to its widest extent. On the other hand, if we're displaying a Picture that contains only a

String_Pic, or a vertically concatenated Picture composed only of String_Pics, then padding the output results only in

writing a lot of unneeded trailing blanks. So, as an optimization, we'll pass display a third argument that indicates whether

to pad the output.

These observations lead us to decide that the display function will take three arguments: the stream on which to generate

the output, the number of the row to write, and a bool that will indicate whether to pad the picture to its full width. With

these decisions, we can fill in the details of the Pic_base family of classes:

class Pic_base {

 // no public interface

 typedef std::vector<std::string>::size_type ht_sz;

 typedef std::string::size_type wd_sz;

 virtual wd_sz width() const = 0;

 virtual ht_sz height() const = 0;

 virtual void display(std::ostream&, ht_sz, bool) const = 0;

};

We start by defining shorthand names for the size_types that we'll need in our implementation. Thinking ahead, we can

see that the underlying data will still be a vector<string>, so the size_type member of vector<string> will be the right

type to represent the height of a picture, and the one from string will be the one we need for the width. We'll abbreviate

these types as ht_sz and wd_sz respectively.

The other task is to define our virtual functions for the base class, which you'll notice take a new form: In each case we say

= 0 where the body would appear. This syntax indicates our intention that there be no other definition of this virtual
function. Why did we define these functions this way?

To answer this question, let's begin by thinking about what the definitions would look like if we tried to write them. In our

design, Pic_base exists only to act as the common base class for our concrete picture classes. We will create objects of

these concrete types as a result of executing one of the Picture operations, or in response to a user's creating a Picture

from a vector<string>. None of these operations directly creates or manipulates Pic_base objects. If there are never

any Pic_base objects, then what would it mean to take the height or width of a Pic_base object (as opposed to doing

so for an object of a type derived from Pic_base)? These operations are needed only for the derived classes, in which

there always will be a concrete picture. For a Pic_base itself, there is nothing of which to take the height or width.

Instead of forcing us to concoct an arbitrary definition for these operations, the C++ language lets us say that there will be no

definition for a given virtual function. As a side effect of declining to implement the virtual function, we also promise that

there will never be objects of the associated type. There may still be objects of types derived from this type, but there are no

objects of its exact type.

The way that we specify that we don't intend to implement a virtual function is to say = 0, as we did on height, width,

and display. Doing so makes it a pure virtual function. By giving a class even a single pure virtual function, we are also

implicitly specifying that there will never be objects of that class. Such classes are called abstract base classes, because

they exist only to capture an abstract interface for an inheritance hierarchy. They are purely abstract: There are no objects of

the base class itself. Once we give a class any pure virtuals, the compiler will enforce our design by preventing us from

creating any objects of an abstract class.

15.1.3 The derived classes

As with virtual itself, the fact that a function is a pure virtual is inherited. If a derived class defines all of its inherited pure

virtual functions, it becomes a concrete class, and we can create objects of that class. However, if the derived class fails to

define even a single pure virtual function that it inherits, then the abstract nature is also inherited. In this case the derived

class is itself abstract, and we will not be able to create objects of the derived class. Because each of our derived classes is

intended to model a concrete class, we know that we have to redefine all of the virtuals in each of the derived classes.

The only other things we have to think about right now are what data each of our derived classes will contain, and the

associated question of how we will construct objects of each type. We designed these classes to model the structure of how

a picture was formed. The type of the picture object tells us how it was created: A String_Pic is created from character

data that a user supplied to us; a Frame_Pic results from running frame on another Picture, and so on. In addition to

knowing how an object was created, we also need to store the object(s) from which it was created. For a String_Pic, we'll

need to remember the characters that the user gave us, which we can do in a vector<string>. We create a Frame_Pic

by framing another Picture, so we'll need to store the Picture that was framed. Similarly, we create HCat_Pics and

VCat_Pics by combining two other Pictures. These classes will store the Pictures used in creating the resultant new

object.

Before settling on a design that stores Pictures in the Pic_base derived classes, we should think through the implications

of this design a bit more deeply. Class Picture is an interface class intended for use by our users. As such, it captures the

interface to our problem domain but not the implementation. Specifically, it does not have height, width, or display
operations. If we think a bit about how these functions might be implemented, we'll see that we'll need access to the

corresponding operations on the Picture(s) stored in each of the derived types. For example, to calculate height of a

VCat_Pic, we need to add the heights of the two Pictures from which it was formed. Similarly, we'll obtain the width by

finding the maximum of the widths of the two component Pictures.

An implication of storing a Picture in each of the derived classes is that we'll have to give class Picture functions that

duplicate the Pic_base operations. Doing so obscures our initial design intent, which was that class Picture should be

concerned with interface not implementation. We can maintain our design by realizing that what we need in the derived

classes is not an interface object but an implementation object. This realization implies that instead of storing a Picture, we

should store a Ptr<Pic_base>. This design keeps a clean separation between interface and implementation, while still

maintaining our intention to reference count our implementation objects to avoid unnecessary data duplication.

Although our design is clean, enough indirection is involved that a picture may help:

Here we assume that we are generating three Pictures. The first Picture represents a String_Pic object that holds the

data that we got from the user. The second one represents a Frame_Pic object that we constructed by calling frame on

the initial Picture. Finally, we construct a Picture that represents the output of vcat run on the two previous Pictures.

Each Picture has a single data member, which is a Ptr<Pic_base>. That Ptr points to an object of the appropriate

Pic_base derived type. Each such object, in turn, contains either the vector that holds a copy of the data we got from the

user, or one or two Ptrs that point to the Pic_base objects used to create the Picture. Not shown in this diagram are the

reference counts associated with the Ptr objects, because we assume that the Ptr class is doing its job, and we can ignore

the details of that job.

What's different from what we did in Chapter 5 is that only String_Pic contains any characters. The others hold one or two

Ptrs. Therefore, we won't copy any characters when we create f or v. Instead, the Ptr will be yet another reference to the

Ptrs in the Pictures that are used in creating a new Picture, and the Ptr class will take care of the reference counting for

us. So, when we call frame(pic), the effect is to create a new Frame_Pic object, and to point its Ptr at the same

String_Pic that is stored in pic. Similarly, the VCat_Pic contains two Ptrs pointing to the Frame_Pic and the

String_Pic respectively. We will not destroy any of these Pic_base objects; doing so is the responsibility of the Ptr class.

It will arrange to destroy each Pic_base object when the last Ptr that refers to each object has gone away.

At this point, we should capture these design decisions in code. We know what data each object will contain, and we know

what our operations will be:

class Pic_base {

 // no public interface

 typedef std::vector<std::string>::size_type ht_sz;

 typedef std::string::size_type wd_sz;

 // this class is an abstract base class

 virtual wd_sz width() const = 0;

 virtual ht_sz height() const = 0;

 virtual void display(std::ostream&, ht_sz, bool) const = 0;

};

class Frame_Pic: public Pic_base {

 // no public interface

 Ptr<Pic_base> p;

 Frame_Pic(const Ptr<Pic_base>& pic): p(pic) { }

 wd_sz width() const;

 ht_sz height() const;

 void display(std::ostream&, ht_sz, bool) const;

};

Here we say that Frame_Pic inherits from Pic_base, and declare our intention to define class-specific versions of each

of the three virtuals from that base class. Thus, Frame_Pic will not be an abstract class, and we will be able to create

Frame_Pic objects. It is worth noting that we have declared these virtuals in the private section of the class. Doing so

lets the compiler enforce our design decision that only class Picture and operations on Pictures can access the

Pic_base hierarchy. Of course, because these virtuals are private, we may need to revisit the class definition to include

friend declarations for class Picture, or the associated operations, as needed.

The Frame_Pic constructor needs only to copy the Ptr from the object that is being framed, which it does in the

constructor initializer. The constructor body is empty, because there is no other work to do.

Continuing with our other derived classes, the concatenation classes will operate similarly to Frame_Pic: Each class will

need to remember its two constituent pictures. How they were concatenated, vertically or horizontally, will be implicit in the

type itself:

class VCat_Pic: public Pic_base {

 Ptr<Pic_base> top, bottom;

 VCat_Pic(const Ptr<Pic_base>& t, const Ptr<Pic_base>& b):

 top(t), bottom(b) { }

 wd_sz width() const;

 ht_sz height() const;

 void display(std::ostream&, ht_sz, bool) const;

};

class HCat_Pic: public Pic_base {

 Ptr<Pic_base> left, right;

 HCat_Pic(const Ptr<Pic_base>& l, const Ptr<Pic_base>& r):

 left(l), right(r) { }

 wd_sz width() const;

 ht_sz height() const;

 void display(std::ostream&, ht_sz, bool) const;

};

The String_Pic class differs slightly from the others in that it stores a copy of the vector<char> that contains the

picture's data:

class String_Pic: public Pic_base {

 std::vector<std::string> data;

 String_Pic(const std::vector<std::string>& v): data(v) { }

 wd_sz width() const;

 ht_sz height() const;

 void display(std::ostream&, ht_sz, bool) const;

};

We still copy the underlying characters from our user's vector parameter v into our own member, which is called data. This

is the only place in our entire program that copies characters. Everywhere else, we copy only Ptr<Pic_base> objects,

which copies pointers and manipulates reference counts.

15.1.4 Copy control

Perhaps the most interesting aspect of our design is what isn't here. There are no copy constructors, assignment operators,

or destructors. Why?

The reason is that the synthesized defaults work. The vector class takes care of managing the space for the initial copy of

the characters that our user gives us as part of creating a new Picture. If we copy or assign two Pictures that refer to

String_Pics, or we destroy a Picture, then the Ptr operations will do the right thing to manage the Picture objects, and

arrange to delete the underlying String_Pic at the right time. More generally, the Ptr class takes care of copying,

assigning, and destroying the Ptr members in the other Pic_base classes—and in class Picture itself.

15.2 Implementation

At this point we have a pretty good design of both our interface and the implementation. The

Picture class and the associated operations on Pictures will manage the user interface. The

Picture constructor and the operations will create objects of one of the types derived from

Pic_base. We'll use Ptr<Pic_base> to manage the underlying space, thus avoiding

extraneous copies of the data. It is now time to implement the interface operations and each of

the derived classes.

15.2.1 Implementing the user interface

We'll start by implementing the interface class and operations. What we know so far is

class Picture {

public:

 Picture(const std::vector<std::string>& =

 std::vector<std::string>());

private:

 Ptr<Pic_base> p;

};

 Picture frame(const Picture&);

 Picture hcat(const Picture&, const Picture&);

 Picture vcat(const Picture&, const Picture&);

 std::ostream& operator<<(std::ostream&, const Picture&);

Let's think first about the operations that create new Pictures. Each of these operations

creates an object of an appropriate class derived from Pic_base. That object will copy the Ptr

from the Picture(s) on which the operation executes. We will bind a Picture to this newly

created Pic_base object, and return that Picture. For example, if p is a Picture, then frame(p)

should create a new Frame_Pic that is attached to the Pic_base from p. It will then generate

a new Picture that is attached to the new Frame_Pic. Let's start here:

Picture frame(const Picture& pic) {

 Pic_base* ret = new Frame_Pic(pic.p);

 // what do we return?

}

We start by defining a local pointer to Pic_base, which we initialize by creating a new

Frame_Pic that copies the underlying Ptr inside pic. There are now two problems. The easy

one is that the Frame_Pic constructor is private. As we saw in §15.1.3/276, each of the

Pic_base classes is a hidden class. We don't want users to know about these classes, and so

we defined only private operations to let the compiler enforce this design decision. We can

solve this problem by making the frame operation a friend of class Frame_Pic.

The other problem is more subtle: We have created a new object of type Frame_Pic, but

what we need is an object of type Picture. More generally, we can imagine that hcat, vcat,

and other functions that we might subsequently write will generate objects of other types

derived from Pic_base, and that they will do so in contexts in which we really want objects of

type Picture. The point is that frame and related operations return Pictures, not Pic_bases.

Fortunately, we know from §12.2/213 that we can convert one type to another if we provide an

appropriate constructor. In this case, the appropriate constructor is one that constructs a

Picture from a Pic_base*:

class Picture {

 Ptr<Pic_base> p;

 Picture(Pic_base* ptr): p(ptr) { }

 // as before

};

Our constructor initializes p with the pointer to Pic_base that we were given. Remember that

class Ptr has a constructor that takes a T*, which in this case is a Pic_base*. The initializer

p(ptr) invokes this Ptr::Ptr(T*) constructor, passing it ptr. Once we have this Picture

constructor, we can complete the frame operation:

Picture frame(const Picture& pic)

{

 return new Frame_Pic(pic.p);

}

We've eliminated the local Pic_base object because we don't need it. Instead, we create a

new Frame_Pic object, the address of which is automatically converted to a Picture, which

we return from the function. Completely understanding this little function requires a good

grasp of the subtleties involved when using automatic conversions and copy constructors. The

single statement in this function has the same effect as

// create the new Frame_Pic

Pic_base* temp1 = new Frame_Pic(pic.p);

// construct a Picture from a Pic_base*

Picture temp2(temp1);

// return the Picture, which will invoke the Picture copy constructor

return temp2;

Like frame, the concatenation functions rely on our new Picture constructor:

Picture hcat(const Picture& l, const Picture& r)

{

 return new HCat_Pic(l.p, r.p);

}

Picture vcat(const Picture& t, const Picture& b)

{

 return new VCat_Pic(t.p, b.p);

}

In each case, we construct an object of the appropriate type, bind a Ptr<Pic_base> to it,

construct a Picture from the Ptr<Pic_base>, and return a copy of that Picture. Of course, for

these functions to compile, we'll need to add the appropriate friend declarations to the

HCat_Pic and VCat_Pic classes.

To construct a Picture from a vector<string>, we adopt the same strategy that we used for

the other kinds of pictures:

Picture::Picture(const vector<string>& v):

 p(new String_Pic(v)) { }

Again, we create a new String_Pic object, but this time we use it directly to initialize p,

instead of returning it. Of course, we will have to remember to make Picture a friend of

String_Pic, so that it can access the String_Pic constructor.

It is important to realize how this constructor differs from the frame, hcat, and vcat functions.

Each of these other functions is defined to return a Picture, and in each one we use a pointer

to a class derived from Pic_base in the return statement. Therefore, we implicitly used the

Picture (Pic_base*) constructor to create a Picture to return. In the Picture constructor that

we've just written, we are still creating a pointer to a class derived from Pic_base—in this

case, class String_Pic—but now we're using this pointer to initialize member p, which has

type Ptr<Pic_base>. Doing so uses the Ptr(T*) constructor in class Pic_base, not the Picture

(Pic_base*) constructor, because we're constructing a Ptr<Pic_base>, not a Picture.

To complete the implementation of our interface functions, we must define the output

operator. This operation is also straightforward: We need to iterate through the underlying

Pic_base, and call display to write each line of the output:

ostream& operator<<(ostream& os, const Picture& picture)

{

 const Pic_base::ht_sz ht = picture.p->height();

 for (Pic_base::ht_sz i = 0; i != ht; ++i) {

 picture.p->display(os, i, false);

 os << endl;

 }

 return os;

};

We initialize ht by calling the (virtual) height function for the underlying Pic_base, so that we

do not have to recompute the height each time through the loop. Remember that p is actually

a Ptr<Pic_base>, and that Ptr has overloaded -> to implement references through the Ptr as

references through the pointer that the Ptr contains. We iterate ht times through the

underlying Pic_base, each time calling the (virtual) display function, asking it to write the

current row. The third argument (false) indicates that display need not pad the output. If we

need padding to write one of the interior Pictures, the inner display functions will indicate that

padding is needed. At this stage, we can't yet tell if padding is necessary. We write endl to

end each line of output, and when we're done, we return os.

As with the other operations that we have implemented, we will have to remember to add a

friend declaration to class Pic_base to allow operator<< to access its display and height

members.

15.2.2 The String_Pic class

Having completed the interface class and operations, we can turn our attention to the derived

classes. We'll start with String_Pic:

class String_Pic: public Pic_base {

 friend class Picture;

 std::vector<std::string> data;

 String_Pic(const std::vector<std::string>& v): data(v) { }

 ht_sz height() const { return data.size(); }

 wd_sz width() const;

 void display(std::ostream&, ht_sz, bool) const;

};

We have implemented the height function, but otherwise the String_Pic class is unchanged

from the one that we described in §15.1.3/277. The height function is trivial: It forwards the

request to the size member of vector.

To determine the width of a String_Pic, we need to look at each element in data to see which

is the longest:

Pic_base::wd_sz String_Pic::width() const {

 Pic_base::wd_sz n = 0;

 for (Pic_base::ht_sz i = 0; i != data.size(); ++i)

 n = max(n, data[i].size());

 return n;

}

Except for the type names, this function looks like the original width function from §5.8/91.

Because a String_Pic holds a vector<string>, we should not be surprised at this similarity.

The display function is more complicated. It has to iterate through the underlying vector,

writing the string associated with the requested row number.

What about padding? Note that this function might be called directly from the output operator,

as would happen if the Picture we were writing pointed to a String_Pic— or it might be called

indirectly, as part of writing a larger Picture of which this String_Pic is a part. In the latter

case, the display function may be asked to pad the output to make each row fill the same size

in the overall output. The amount of padding will vary for each string, and will be whatever is

needed to consume as many spaces in the output as the number needed for the longest

string. In other words, we'll need to pad from the length of this string to the width() of this

String_Pic. A bit of forethought should convince us that we're likely to need to pad other

pictures too. For now, we'll assume that we have a pad function that takes an output stream

and the start and (one past) the end positions to pad with blanks. We'll implement this

function shortly.

Another complexity arises from the fact that the row number passed to display may exceed

the height of this String_Pic. One way in which this situation could happen is if the

String_Pic is part of a horizontally concatenated Picture in which one side is shorter than the

other. Our Pictures line up at the top border, but they may be of different heights. Thus, we

will need to check whether the row we're asked to write is in range. With this analysis

complete, we can now write the code:

void String_Pic::display(ostream& os, ht_sz row, bool do_pad) const

{

 wd_sz start = 0;

 // write the row if we're still in range

 if (row < height()) {

 os << data[row];

 start = data[row].size();

 }

 // pad the output if necessary

 if (do_pad)

 pad(os, start, width());

}

We first check whether the row we were asked to write is in range—that is, whether row is

less than the height() of this String_Pic. If so, then we write it and set start to indicate how

many characters we wrote in the process. Regardless of whether we wrote a row, we check

whether we are supposed to pad the output. If so, we pad from start to the overall width() of

this String_Pic. If the row is out of range, then start is 0, so we write an entire row of blanks.

15.2.3 Padding the output

We can now think about our padding function. Because we want to access this function from

each of the derived classes, we'll define the pad operation as a function member of Pic_base

that is both static and protected:

class Pic_base {

 // as before

protected:

 static void pad(std::ostream& os, wd_sz beg, wd_sz end) {

 while (beg != end) {

 os << " ";

 ++beg;

 }

 }

};

This function takes an ostream on which to write blanks, and two values that control how

many blanks to write. When a display function needs to call pad, it will pass the current

column number and one past the last column number that needs to be filled in by the current

display operation. The pad function will fill this range with blanks.

Note the use of the static keyword on the declaration of pad. As we saw in §13.4/244, this use

of static indicates that pad is a static member function. Such functions differ from an ordinary

member function in that they are not associated with an object of the class type.

It may also be surprising that we can define a member function for an abstract base class.

After all, if there can be no objects of the base class, why should there be member functions?

However, remember that each derived object contains a base-class part. Each derived class

also inherits any member functions defined in the base. Thus, a base-class function will

execute on the base-class portion of a derived object. In this particular case, the function that

we are defining is a static member, so the question of access to members of the base is

moot. But it is important to realize that abstract classes may define data members, and

(ordinary) member functions, as well as static ones. These functions will access the

base-class objects that are part of derived objects.

Static members (both functions and static data members, which we can also define) are useful

in that they let us minimize the names that are defined globally. Our pad function is a good

example. We can imagine many abstractions that have the notion of padding. In this book we

talked about padding in the context of writing a formatted report of student grades, as well as

in the context of writing Pictures. If the Picture class were to define pad as a global function,

then we would not also be able to define a pad function for Student_info, or vice versa. By

making pad a static member, we allow for the fact that other abstractions in our program

might have the notion of padding. As long as each class defines what pad means only in the

context of the class, these mutually independent notions of padding can coexist within our

program.

15.2.4 The VCat_Pic class

Implementing the concatenation classes is not hard. We'll start with VCat_Pic:

class VCat_Pic: public Pic_base {

 friend Picture vcat(const Picture&, const Picture&);

 Ptr<Pic_base> top, bottom;

 VCat_Pic(const Ptr<Pic_base>& t, const Ptr<Pic_base>& b):

 top(t), bottom(b) { }

 wd_sz width() const

 { return std::max(top->width(), bottom->width()); }

 ht_sz height() const

 { return top->height() + bottom->height(); }

 void display(std::ostream&, ht_sz, bool) const;

};

We added the appropriate friend declaration for the vcat operation, and implemented the

height and width functions inline. If a picture is concatenated vertically, its height is the sum

of its two components' heights, and the width is the greater of the two components' widths.

The display function is not much harder:

void VCat_Pic::display(ostream& os, ht_sz row, bool do_pad) const

{

 wd_sz w = 0;

 if (row < top->height()) {

 // we are in the top subpicture

 top->display(os, row, do_pad);

 w = top->width();

 } else if (row < height()) {

 // we are in the bottom subpicture

 bottom->display(os, row - top->height(), do_pad);

 w = bottom->width();

 }

 if (do_pad)

 pad(os, w, width());

}

First, we define a variable w, which will contain the width of the current row, in case we need it

for padding. Next, we check whether we're in the top component, by testing row against the

height() of the top picture. If we're in that range, then we invoke display to write the top

component, passing the bool that we were given to indicate whether to pad the output.

Remember, display is virtual, so this call will invoke whatever the appropriate display function

is for the kind of Pic_base to which top actually refers. Once we've written the given row, we

remember its width in w.

If we're not in top, we might be in bottom. If we get to this else test, then we know that row is

greater than top->height(), so we now check whether row is within the overall range of this

picture. If so, it must be in the bottom picture. As we did for top, we call display on bottom to

write the picture, offsetting the row number to adjust for having already written as many rows

as are in top. Having written the row from the bottom picture, we remember its width. If we're

out of range, w remains 0.

When we're done writing the row, we check whether padding is needed. If so, we pad from

the width that we remembered in w to the full width of our own picture.

15.2.5 The HCat_Pic class

Not surprisingly, the HCat_Pic class looks a lot like VCat_Pic:

class HCat_Pic: public Pic_base {

 friend Picture hcat(const Picture&, const Picture&);

 Ptr<Pic_base> left, right;

 HCat_Pic(const Ptr<Pic_base>& l, const Ptr<Pic_base>& r):

 left(l), right(r) { }

 wd_sz width() const { return left->width() + right->width(); }

 ht_sz height() const

 { return std::max(left->height(), right->height()); }

 void display(std::ostream&, ht_sz, bool) const;

};

Because we're concatenating two pictures side by side, this time the width is the sum of the

components' widths, and the height is the greater of the two heights. Here, the display

function is simpler than the corresponding one from VCat_Pic, because we delegate

managing whether the row is in range to the component pictures:

void HCat_Pic::display(ostream& os, ht_sz row, bool do_pad) const

{

 left->display(os, row, do_pad || row < right->height());

 right->display(os, row, do_pad);

}

First we write the requested row from left by calling display, asking it to write the given row.

We pad this row if we were asked to pad our own output, or if we're on a row that is within the

range of the right-hand picture (in which case we must pad each row of the left-hand picture to

ensure that the corresponding row of the right-hand picture begins at the right place in the

output line). If the row is out of range for left, then the display function executed on left will

deal with that problem. Similarly, we delegate writing the requested row from right to the

display function on right. This time we pass along the do_pad value that we were given,

because there is no reason to force padding on the right-hand side.

15.2.6 The Frame_Pic class

The only derived class we have left to implement is Frame_Pic:

class Frame_Pic: public Pic_base {

 friend Picture frame(const Picture&);

 Ptr<Pic_base> p;

 Frame_Pic(const Ptr<Pic_base>& pic): p(pic) { }

 wd_sz width() const { return p->width() + 4; }

 ht_sz height() const { return p->height() + 4; }

 void display(std::ostream&, ht_sz, bool) const;

};

The height and width operations forward their calculations to the picture that was framed. We

add 4 to these values, to account for the borders and the space that separates the border

from the interior, framed picture. The display function is tedious but not hard:

void Frame_Pic::display(ostream& os, ht_sz row, bool do_pad) const

{

 if (row >= height()) {

 // out of range

 if (do_pad)

 pad(os, 0, width());

 } else {

 if (row == 0 || row == height() - 1) {

 // top or bottom row

 os << string(width(), '*');

 } else if (row == 1 || row == height() - 2) {

 // second from top or bottom row

 os << "*";

 pad(os, 1, width() - 1);

 os << "*";

 } else {

 // interior row

 os << "* ";

 p->display(os, row - 2, true);

 os << " *";

 }

 }

}

First we check whether the requested row is in range; if not and we're being asked to pad, we

do so, filling the entire row with blanks. If we're in range, there are three cases: We're writing

the top or bottom border, we're writing the mostly blank line that separates the border from the

interior picture, or we're writing a row from the interior picture.

We know that we're dealing with the top or bottom border if the row number is 0 or height() -

1. In this case, we write a row that consists entirely of asterisks to form the border. If we're

one row in from the border, then we want to write an asterisk, followed by the appropriate

number of blanks, followed by another asterisk. Finally, we might be in an interior row of the

picture. In this case, we want to write that row of the border, which is an asterisk followed by a

blank, and then the interior picture, followed by another blank and asterisk for the right-hand

border. We write the interior picture by calling display, offsetting the row value to account for

the border that we have already written. In the call to display, we indicate that the interior

picture should pad the output so that when we write the right-hand border, it will be straight.

15.2.7 Don't forget friends

The only work that remains is to add the appropriate friend declarations to Picture and

Pic_base. We've already noted that we need to add a friend declaration to class Picture for

each of the Picture operations. After all, these operations all use the Ptr inside Picture, and

need permission to access that member. What may be less obvious is the collection of

friends that we need to add to class Pic_base:

// forward declaration, described in §15.3/288

class Picture;

class Pic_base {

 friend std::ostream& operator<<(std::ostream&, const Picture&);

 friend class Frame_Pic;

 friend class HCat_Pic;

 friend class VCat_Pic;

 friend class String_Pic;

 // no public interface

 typedef std::vector<std::string>::size_type ht_sz;

 typedef std::string::size_type wd_sz;

 // this class is an abstract base class

 virtual wd_sz width() const = 0;

 virtual ht_sz height() const = 0;

 virtual void display(std::ostream&, ht_sz, bool) const = 0;

protected:

 static void pad(std::ostream& os, wd_sz, wd_sz);

};

class Picture {

 friend std::ostream& operator<<(std::ostream&, const Picture&);

 friend Picture frame(const Picture&);

 friend Picture hcat(const Picture&, const Picture&);

 friend Picture vcat(const Picture&, const Picture&);

public:

 Picture(const std::vector<std::string>& =

 std::vector<std::string>());

private:

 Picture(Pic_base* ptr): p(ptr) { }

 Ptr<Pic_base> p;

};

 // operations on Pictures

 Picture frame(const Picture&);

 Picture hcat(const Picture&, const Picture&);

 Picture vcat(const Picture&, const Picture&);

 std::ostream& operator<<(std::ostream&, const Picture&);

The first friend declaration in Pic_base should be easy to understand. The output operator

invokes both the height() and display() functions, so it must be granted access to these

members. What may be more surprising is the friend declarations for the classes that inherit

from Pic_base. Don't they have access to the members of Pic_base through inheritance?

Yes they do, in principle, but except for pad, all of the members of Pic_base are private. Why

didn't we just make these other members protected, as we did with the pad function? The

answer is that it wouldn't have solved the problem.

A member of a derived class (such as Frame_Pic) can access the protected members of the

base-class parts of objects of its own class (such as Frame_Pic), or of other classes derived

from it, but it cannot access the protected members of base-class objects that stand

alone—that is, that are not part of a derived-class object. Therefore, member functions of

class Frame_Pic, which is derived from class Pic_base, can access protected members of

the Pic_base parts of Frame_Pic objects, or objects of classes derived from Frame_Pic, but

they cannot access protected members of stand-alone Pic_base objects directly.

One might think that this restriction would be irrelevant to our program. After all, class

Pic_base is an abstract base class, so there can be no stand-alone objects of that class.

However, the access rules apply to any attempt to access a member of what appears to be a

stand-alone Pic_base object, even if at run time the object is of a derived class. For example,

consider the height function in class Frame_Pic:

ht_sz Frame_Pic::height() const { return p->height() + 4; }

This function uses the expression p->height(), which implicitly calls the operator-> member of

class Ptr (§14.3/263) to obtain a pointer. This pointer has type Pic_base*; we dereference it

to access the height member of the corresponding object. Because the pointer's type is

Pic_base*, the compiler will check protection as if we were trying to access a member of a

Pic_base object, even though the actual object will be of a type derived from Pic_base.

Therefore, even if we made height a protected member, we would still have to include friend

declarations to allow this access. Each of the derived classes in our hierarchy turns out to

require friend declaration for similar reasons.

This rule may be surprising, but its logic is straightforward: If the language granted derived

objects access to the protected members of a base-class object, then it would be trivial to

subvert the protection mechanisms. If we needed access to a protected member of a class,

we could define a new class that inherited from the class that we wanted to access. Then we

could define the operation that needed access to the protected member as a member of that

newly derived class. By doing so, we could override the original class designer's protection

strategy. For this reason, protected access is restricted to members of the base-class part of

a derived-class object, and does not allow direct access to the members of base-class

objects.

15.3 Details

Abstract base classes have one or more pure virtual functions:

class Node {

 virtual Node* clone() const = 0;

};

says that clone is a pure virtual function, and, by implication, that Node is an abstract base

class. It is not possible to create objects of an abstract class. A class can be made abstract

through inheritance: If the class fails to redefine even a single inherited pure virtual, then the

derived class is also abstract.

Forward declarations: The requirement to define names before using them (§0.8/6) causes

trouble in writing families of classes that refer to one another. To avoid this trouble, you can

declare just the name of the class by writing

class class-name;

thereby saying that class-name names a class, but not describing the class itself.

We used such a forward declaration for class Picture in §15.2.7/286. The Picture class

contains a member of type Ptr<Pic_base>, and the Pic_base class has a friend declaration

for operator<< that uses the type const Picture&. Therefore, these two classes refer to each

other.

Such mutual type dependencies can yield programs that are impossible to implement. For

example:

class Yang; // forward declaration

class Yin { Yang y; };

class Yang {

 Yin y;

};

Here, we have said that every Yin object contains a Yang object, which contains a Yin object,

and so on. Implementing such types would require infinite memory.

The mutual dependency in our picture classes does not cause such problems, because class

Picture does not contain a member of type Pic_base directly. Instead, it has a member of

type Ptr<Pic_base>, which contains a Pic_base*. Using pointers in this way avoids infinitely

nested objects.

Moreover, in the case of a pointer (or reference), the compiler does not actually need to know

the details of the type until operations are invoked through the pointer (or reference). Because

the declaration of operator<< uses the const Picture& type only to declare a parameter type,

the compiler needs to know only that the name Picture names a type. The details of that type

aren't needed until we define operator<<.

Exercises

15-0. Compile, execute, and test the programs in this chapter.

15-1. Test your system by writing a program that executes

Picture p = // some initial starting picture

Picture q = frame(p);

Picture r = hcat(p, q) ;

Picture s = vcat(q, r);

cout << frame(hcat(s, vcat(r, q))) << endl;

15-2. Reimplement the Frame_Pic class so that the frame uses three different characters:

one for the corners, another for the top and bottom borders, and a third for the side borders.

15-3. Give users the option to specify what characters to use for these border characters.

15-4. Add an operation to reframe a Picture, which changes the frame characters. The

operation should change all of the frames in the interior picture.

15-5. Reimplement HCat_Pic so that when pictures of a different size are concatenated, the

shorter one is centered in the space consumed by the longer one. That is, if we horizontally

concatenate two pictures, one of which is four lines long and the other is two lines long, the

first and last rows of the output picture will be blank on the side of the shorter picture. What

can we now conclude about the necessity of the tests between row and 0.

15-6. The Vec and str classes that we developed in Chapters 11 and 12 are powerful enough

to be used to implement Pictures. Reimplement the material in this chapter to use Vec<str>

instead of vector<string>, and test your implementation.

16

Where do we go from here?

We have come to the end of the main part of our book. This ending may seem premature:

There are still significant parts of the language, and large parts of the library, that we have not

described. However, we have chosen to stop at this point for two important reasons.

The first reason is that we have already presented tools that you can use to solve a wide

range of programming problems. We believe that your best strategy at this point is to practice

using these tools on your own problems before you learn about any more new tools. It might

even be a good idea to begin by rereading this entire book, doing all the exercises that you

didn't do the first time around.

If you are looking for ideas about programming style or technique, we recommend our

previous book, Ruminations on C++ (Addison-Wesley, 1997), which contains a mixture of

stylistic essays and programming examples.

The second reason is that once you have written enough programs that use the material that

we have covered so far, you will no longer need the detailed tutorial style that we have

adopted in this book. Instead, you will have gained enough C++ programming experience that

you will be able to take advantage of books that contain more detailed information, and less

explanation, than this one.

16.1 Use the abstractions you have

There is an old story about a visitor who has become lost in New York, with tickets in hand to

a piano recital. Stopping a passerby, the visitor asks, "Excuse me. Can you tell me how to get

to Carnegie Hall?" The answer: "Practice!"

It is important to understand—thoroughly—how to use the abstractions that you have

available before you try to learn about new ones. The abstractions that you have include the

ones from the standard library, and others that you may have had to create as you solve

programming problems. By combining ideas from the standard library, which we can apply to

a wide variety of problems, with ideas that solve problems in a particular application domain,

we can write useful programs with surprisingly little effort. In particular, if we design our own

abstractions well, we should be able to use them to solve problems that we had not

considered when we designed them.

We can find an example of this ideal in the classes that we wrote in Chapter 13 to store

student grades and in Chapter 15 to generate character pictures. We have used the

character-picture classes in a variety of forms for years. In contrast, we wrote the

student-record classes from scratch for this book. Only when we were thinking about what to

say in this chapter did we realize that we could combine these two abstractions in a

particularly nice way.

The combination uses character pictures to write a histogram of students' grades. The point,

of course, is that such a visual display lets us see anomalies much more quickly than does a

mere table of numbers. The basic idea is to convert each final grade into a string of = symbols

whose length is proportional to the grade. For example, with appropriate input, we might

generate the following output:

* *

* James =============== *

* Kevin ================ *

* Lynn ================= *

* MaryKate ================ *

* Pat ============ *

* Paul ================== *

* Rhia ================ *

* Sarah =================== *

* *

From this histogram, it is immediately obvious that Pat is having trouble keeping up with the

course.

What is nice about this example is how small it is, and how directly the solution mirrors the

problem:

 Picture histogram(const vector<Student_info>& students) {

 Picture names;

 Picture grades;

 // for each student

 for (vector<Student_info>::const_iterator it = students.begin();

 it != students.end(); ++it) {

 // create vertically concatenated pictures of the names and grades

 names = vcat(names, vector<string>(1, it->name()));

 grades = vcat(grades,

 vector<string>(1, " " + string(it->grade() / 5, '=')));

 }

 // horizontally concatenate the name and grade pictures to combine them

 return hcat(names, grades);

}

Our histogram function takes a (const reference to a) vector of Student_info objects, each of

which represents a student. From these records, we will create two Pictures, one of which,

names, contains all the students' names; the other, grades, contains a row that corresponds

to each student's final grade. When we've processed every student, we horizontally

concatenate the two pictures, lining up each student with the corresponding grade. Because

each picture is conceptually a rectangle, this horizontal concatenation automatically accounts

for the different lengths of the students' names.

The main program builds up the vector, in familiar fashion, by reading a file of student

records. When it's done, it calls histogram to generate the Picture, frames it, and then uses

the output operator to write it:

int main()

{

 vector<Student_info> students;

 Student_info s;

 // read the names and grades

 while (s.read(cin))

 students.push_back(s);

 // put the students in alphabetical order

 sort(students.begin(), students.end(), Student_info::compare);

 // write the names and histograms

 cout << frame(histogram(students)) << endl;

 return 0;

}

The most important new idea in this example is that it contains no new ideas! What made it

easy was being so familiar with the ideas that we have already covered that we can combine

them in ways that we had not anticipated. This kind of familiarity comes only with practice.

16.2 Learn more

Eventually, you are going to need to know more details about the language and library. For

that matter, our ideal of learning nothing new until you understand thoroughly everything that

we have presented so far—like most ideals—is probably not entirely attainable in practice. At

some point, you are going to encounter a question about C++ that this book does not answer,

so you will need to turn elsewhere for advice.

For this purpose, two books stand out. The first, Bjarne Stroustrup's The C++ Programming

Language, Third Edition (Addison-Wesley, 1998), is the most complete single source of

information about C++. It covers the entire language and library, and tells you everything you

need to know—and probably more—about all aspects of both. The second, Matthew

Austern's Generic Programming and the STL (Addison-Wesley, 1999), discusses the

standard library's algorithms and data structures in much more detail than either our book or

Stroustrup's. Moreover, it is authoritative, because although Austern was not the original

author or implementer of this part of the library—that honor goes to Alex Stepanov—he has

been working closely with Stepanov for the past several years, and is one of the main driving

forces behind the further evolution of that library.

Together, this book, Ruminations on C++, and the books by Stroustrup and Austern comprise

well over 2,000 pages. We are, therefore, reluctant to recommend any additional reading.

However, if your appetite is truly voracious, we suggest that you visit http://www.accu.org.

There, you will find reviews of more than 2,000 books, many of which are related to C++. They

also have the good taste to give their highest recommendations to Ruminations on C++ and

the books by Stroustrup and Austern.

As you look for reading material, keep in mind that books on the shelf do not make you a

better programmer. Ultimately, the only way to improve your programming is to write

programs. Have fun!

Exercises

16-0. Compile, execute, and test the programs in this chapter.

16-1. Write a self-reproducing program. Such a program is one that does no input, and that,

when run, writes a copy of its own source text on the standard output stream.

http://www.accu.org

Appendix A

Language details

This appendix serves two purposes: It includes some additional low-level details, and it

summarizes in one place the expressions and statements of the language, including some

that we have not used elsewhere in this book. The low-level material relates primarily to the

complexities of C++'s declarator syntax, and the details of the built-in arithmetic types, both of

which the language inherits from the C programming language. These details are not

necessary for understanding the programs in this book, and indeed are not necessary to

writing good C++ programs. However, there are many programs that do require knowledge of

these details, so it may be useful to review them.

In this appendix we describe syntax as follows: constant-width symbols stand for themselves,

italic words stand for syntactic categories,... means zero or more repetitions of the item that

immediately precedes it, and phrases enclosed in italic brackets [] are optional. Moreover, we

use italic curly braces { } for grouping, and | to show alternatives. For example,

declaration-stmt: decl-specifiers [declarator [initializer]] [, declarator [initializer]]... ;

means that a declaration-stmt consists of decl-specifiers, followed by zero or more

declarators, each optionally followed by an initializer, followed by a semicolon.

A.1 Declarations

Declarations can be hard to understand, especially if they declare several names with different

types or deal with functions that return pointers to functions. For example, in §10.1.1/171, we

saw that

int* p, q;

defines p as an object of type "pointer to int" and q as an object of type int, and in

§10.1.2/173, we saw that

double (*get_analysis_ptr())(const vector<Student_info>&);

declares get_analysis_ptr as a function, with no arguments, that returns a pointer to a

function with a const vector<Student_info>& argument that returns double. You can clarify

such declarations by rewriting them, for example, as

int* p;

int q;

and

// define analysis_fp as a name for the type of a function that takes a

// const vector<Student_info>& argument and returns a double

typedef double (*analysis_fp)(const vector<Student_info>&);

analysis_fp get_analysis_ptr();

Unfortunately, that strategy won't save you from having to read confusing declarations in other

people's programs.

In general, a declaration looks like

declaration-stmt: decl-specifiers [declarator [initializer]] [, declarator [initializer]]... ;

It declares a name for each of its declarators. These names are meaningful from where they

are declared to the end of the declaration's scope. Some declarations are also definitions.

Names may be declared multiple times but must be defined only once. A declaration is a

definition if it allocates storage or defines a class or function body.

C++ inherits its declaration syntax from C. The key to understanding declarations is to realize

that each declaration consists of two parts: a sequence of decl-specifiers that collectively

specify a type and other attributes of what is being declared, followed zero or more

declarators (each of which can optionally have an associated initializer). Each declarator

ascribes to a name a type that depends on the specifiers and on the form of the declarator.

The first step in understanding any declaration is to locate the boundary between the

specifiers and the declarators. Doing so is surprisingly simple: All the specifiers are keywords

or names of types, so the specifiers end just before the first symbol that isn't one of those. For

example, in

const char * const * const * cp;

the first symbol that is neither a keyword nor the name of a type is *, so the specifiers are

const char, and the (only) declarator is * const * const * cp.

As another example, consider the arcane declaration from §10.1.2/173:

double (*get_analysis_ptr())(const vector<Student_info>&);

The boundary here is easy to find: double names a type, and the open parenthesis that

follows it is neither a keyword nor the name of a type. Therefore, the decl-specifiers part is

just double, and the declarator is the rest of the declaration, not including the semicolon.

A.1.1 Specifiers

We can divide the decl-specifiers into three broad categories: type specifiers, storage-class

specifiers, and miscellaneous specifiers:

decl-specifiers: {type-specifier | storage-class-specifier | other-decl-specifier} ...

However, this division serves only to aid understanding, because there is no corresponding

division in declarations themselves: decl-specifiers can appear in any order.

Type specifiers determine the type that underlies any declaration. We discuss the built-in

types themselves in §A.2/299.

type-specifier: char | wchar_t | bool | short | int | long | signed

 unsigned | float | double | void | type-name | const | volatile

type-name: class-name | enum-name | typedef-name

The const specifier says that objects of the type may not be modified, volatile tells the

compiler that the variable may change in ways outside the definition of the language and that

aggressive optimizations should be avoided.

Note that const can appear both as part of the specifiers, thus modifying the type, and as part

of the declarator, specifying a const pointer. There is never any ambiguity because a const

that is part of a declarator always follows a *.

Storage-class specifiers determine the location and lifetime of a variable:

storage-class-specifiers: register | static | extern | mutable

The register specifier suggests that the compiler should try to optimize performance by

putting the object into a register if possible.

Ordinarily, local variables are destroyed on exit from the block in which they were declared;

static variables are preserved across entry and exit from a scope.

The extern specifier indicates that the current declaration is not a definition, implying that

there is a corresponding definition elsewhere.

The mutable storage class is used only for class data-members, and allows those

data-members to be modified even if they are members of const objects.

Other declaration specifiers define properties that are not related to types:

other-decl-specifier: friend | inline | virtual | typedef

The friend specifier (§12.3.2/216 and §13.4.2/246) overrides protection.

inline is a specifier for function definitions and is a hint to the compiler to lay the code down

inline if possible. The definition of the function must be in scope when the call is to be

expanded, so it is usually a good idea to put the body of an inline function into the same

header that declares the function.

The virtual specifier (§13.2.1/234) may be used only with member functions, and denotes a

function for which calls can be dynamically bound.

The typedef specifier (§3.2.2/43) defines a synonym for a type.

A.1.2 Declarators

A declaration declares one entity for each declarator, giving that entity a name, and implicitly

giving the entity the storage class, type, and other attributes as specified by the specifiers.

The specifiers and declarator together determine whether the name names an object, array,

pointer, reference, or function. For example,

int *x, f();

declares that x is a pointer to int and f is a function returning int. It is the declarators *x and f()

that make the distinction between the types of x and f.

declarator: [* [const] | &]... direct-declarator

direct-declarator: declarator-id | (declarator) |

 direct-declarator (parameter-declaration-list) |

 direct-declarator [constant-expression]

A declarator-id is an identifier, possibly qualified:

declarator-id: [nested-name-specifier] identifier

nested-name-specifier: { class-or-namespace-name ::}...

If a declarator is a direct-declarator that consists only of a declarator-id, then it specifies

that the identifier being declared has the properties implied by the decl-specifiers, without

further modification. For example, in the declaration

int n;

the declarator is n, which is a direct-declarator that consists only of a declarator-id, so by

implication, n has type int.

If a declarator has one of the other possible forms, then you can determine the type of the

identifier as follows: First, let T be the type implied by the decl-specifiers, ignoring non- type

properties such as friend or static, and let D be the declarator. Then repeat the following

steps until you have reduced D to a declarator-id, at which point T is the type you seek:

If D has the form (D1), then replace D with D1.1.

If D has the form * D1 or * const D1, replace T with "pointer to T" or "constant pointer

to T" (not "pointer to constant T"), depending on whether the const is present. Then

replace D with D1.

2.

If D has the form D1 (parameter-declaration-list), replace T with "function returning T"

with arguments as defined by the parameter-declaration-list, and replace D with D1.

3.

If D has the form D1 [constant-expression], then replace T with "array of T" that has

the number of elements given by the constant-expression, and replace D with D1.

4.

Finally, if the declarator has the form & D1, then replace T with "reference to T" and D

with D1.

5.

As an example, consider the declaration

int *f();

We start with T and D being int and *f(), so D has the form *D1, where D1 is f().

You might think that D could have either of the forms D1() or *D1. However, if D had form

D1(), then D1 would have to be *f, and D1 would also have to be a direct-declarator (because

the grammar at the beginning of this section allows only a direct-declarator to precede ()). If

we look at the definition of direct-declarator, however, we see that it cannot contain a *.

Therefore, D can only be *f(), which has the form *D1, where D is f().

Now that we have determined that D1 is f(), we know that we must replace T with "pointer to

T, " which is "pointer to int, " and replace D with f().

We have not yet reduced D to a declarator-id, so we must repeat the process. This time, D1

can only be f, so we replace T with "function returning T," which is "function returning pointer

to int with no arguments," and we replace D with f.

At this point we have reduced D to a declarator-id, so we're done. We have determined that

the declaration

int *f();

declares f to have type "function with no arguments returning pointer to int. " As another

example, the declaration

int* p, q;

has two declarators, *p and q. For each declarator, T is int. For the first declarator, D is *p, so

we transform T to "pointer to int," and D to p. The declaration, therefore, gives p the type

"pointer to int."

We analyze the second declarator independently, with T again being int and D being q. At

this point it should be obvious that the declaration gives q the type int.

Finally, let's analyze the arcane example from §10.1.2/173:

double (*get_analysis_ptr())(const vector<Student_info>&);

The analysis proceeds in the following five stages:

T: double D: (*get_analysis_ptr())(const vector<Student_info>&)1.

T: function returning double with const vector<Student_info>& argument D:

(*get_analysis_ptr())

2.

T: function returning double... (as before) D: *get_analysis_ptr()3.

T: pointer to function returning double... D: get_analysis_ptr()4.

T: function returning pointer to function returning double... D: get_analysis_ptr5.

In other words, we learn that get_analysis_ptr is a function that returns a pointer to a function

that returns a double result, and takes a const vector<Student_info>& as its argument. We

leave unwinding const vector<Student_info>& as an exercise. Fortunately, few function

declarations are this confusing; most of them look like

declarator: declarator-id (parameter-declaration-list)

By far the most common difficult case is a function that returns a pointer to function.

A.2 Types

Types pervade C++ programs. Every object, expression, and function has a type, and the type

of an entity determines its behavior. With a single exception (the type of an object within an

inheritance hierarchy that is accessed through a pointer or reference), the type of every entity

is known at compile time.

In C++, types can be thought of as ways of structuring and accessing memory as well as

ways of defining operations that can be performed on objects of the type. That is, types

specify both properties of data and operations on that data.

Although this book concentrates on using and building higher-level data structures, it is

important to understand the primitive types used to build them. These primitive types

represent common abstractions that are close to the hardware, such as numbers (integral and

floating point), characters (including wide characters for international character sets), truth

values, and machine addresses (pointers, references, and arrays). Literals, also often called

constants, represent integer, floating-point, Boolean, character, or string values. This section

reviews and expands on facilities related to the built-in types.

A.2.1 Integral types

C++ inherits from C a bewildering variety of integral types, including integers, Boolean, and

character types. Because C++ is intended to be able to run efficiently on a wide variety of

hardware, it leaves many of the details of its fundamental types up to the implementation

rather than defining those types precisely.

A.2.1.1 Integer

There are three distinct signed integer types and three distinct unsigned integer types:

short int int long int

unsigned short int unsigned int unsigned long int

The short and long types can be abbreviated by dropping the keyword int. The keywords, if

there are more than one, can appear in any order.

Each of these types is capable of representing any integer within an implementation- defined

range. Each type but the first must offer a range at least as generous as that of the type that

precedes it. The ranges for short int and int must be at least ±32767 (±(215 -1)), and the

range for long int must be at least ±2147483647 (±(231 -1)).

Every signed integral type has a corresponding unsigned type. Every unsigned type

represents integers modulo 2n, where n depends on the type and the implementation.

Analogous to the signed types, the n that corresponds to every unsigned type except

unsigned char must be at least as large as the n for the preceding type. Moreover, every

unsigned type must be capable of holding every non-negative value in the range of the

corresponding signed type, and each signed type is required to have the same internal

representation as the corresponding unsigned type for the values that they have in common. It

follows from these requirements that the four unsigned types must have an extra bit that

corresponds to signed types' sign bits, meaning that the unsigned types must correspond to

values of n that are at least 8, 16, 16, and 32 respectively.

Compilers are allowed to use either one's- or two's-complement representation for the signed

types.

The standard library defines a type called size_t that is a synonym for one of the unsigned

types. It is guaranteed to be large enough to hold the size of the largest possible object,

including arrays. Its type is defined in the system header <cstddef>.

Integer literals: An integer literal is a sequence of digits, optionally preceded by a base

indicator, and optionally followed by a size indicator. Pedantically speaking, integer literals do

not have signs, so that -3 is an expression, not a literal.

If the literal begins with 0x or 0X, then the integer is represented in hexadecimal, and the

"digits" can include any of AaBbCcDdEeFf as well as the usual decimal digits. If the literal

begins with a 0 that is not followed by x or X, then the integer is represented in octal, and the

"digits" can include only 01234567.

The size indicator is u, l, ul, or lu, in either upper- or lowercase. If it is lu or ul, then the literal

has type unsigned long. If it is u, then the literal has type unsigned if the value will fit;

otherwise, it has type unsigned long. If it is l, then the literal has type long if the value will fit;

otherwise, it has type unsigned long.

If there is a base indicator but no size indicator, then the type is the first of int, unsigned,

long, and unsigned long into which the value will fit. If there is neither a size nor a base

indicator, then the type is int if the value will fit, and long otherwise.

These rules imply that the type of an integer literal often depends on the implementation.

Fortunately, integer literals in well-written programs tend to be small, so these details don't

matter most of the time. Nevertheless, we have mentioned them in case you need to refer

back to them.

A.2.1.2 Boolean

Expressions that are treated as conditions have type bool. The possible values of type bool

are true and false. It is possible to use a number or a pointer as a truth value. In such

contexts, zero is considered false, and any other value is considered true. When a bool value

is used as a number, false is treated as 0 and true as 1.

Boolean literals: The only Boolean literals are true and false, each of which has type bool,

with the obvious meaning.

A.2.1.3 Character

In C++, characters are just tiny integers. In particular, they can be used in arithmetic

expressions in the same way as integers.

As is the case with integers, characters can be signed or not, so there are distinct signed

char and unsigned char types. Every implementation's range for signed char is required to

be able to contain every character in the machine's basic character set, as well as being at

least ±127 (±(27 -1)).

In addition, there is a plain char type, which, although it is a distinct type, is required to have

the same representation as one of the other two types. It is up to the implementation to

determine which of those types it should be. As usual, the choice is intended to reflect which

representation is most natural for the machine.

There is also a "wide character" type, called wchar_t, which must contain at least 16 bits, and

is intended to be used for representing characters in languages such as Japanese, which

have many more characters than the Latin alphabet provides. The wchar_t type is required to

behave the same way as one of the other integral types. The particular other type involved

depends on the implementation and is normally chosen to yield the most efficient

representation.

Character literals: A character literal, of which 'a' is an example, is typically a single

character surrounded by single quotes. It has type char, which, as we know from

§A.2.1.3/301, is really a kind of integer. Every implementation defines a correspondence

between characters, such as a, and their integral values. Most programs have no reason to

depend on that correspondence, because programmers can write literals such as 'a' to mean

"the integer that corresponds to the character a." Because the correspondence varies from

one implementation to another, programmers should not depend on arithmetic properties of

characters. For example, there is no assurance that 'a'+1 is equal to 'b'. Digits, however, are

guaranteed to have contiguous values. For example, '3' + 1 is always equal to '4' (but not

necessarily equal to 4).

String literals, A string literal, of which "Hello, world! " is an example, is a sequence of zero

or more characters surrounded by double quotes. The type of a string literal is const char*.

The compiler inserts a null character at the end of every string literal.

Two string literals that are separated only by whitespace are automatically concatenated to

form a longer string literal. This behavior allows string literals that span more than a single line

to be written more conveniently.

A.2.1.4 Character representations

We said that a character literal is typically a single character surrounded by single quotes, and

that a string literal is typically a sequence of characters surrounded by double quotes. The

reason for the "typically" is that there are some exceptions to the general rule. These

exceptions apply equally to character literals and string literals:

To represent a quote of the same kind that began the literal, you must precede it by

another backslash, as in '\'', or "the \ quotes\"", to make it clear that the quote does

not end the literal. For convenience, you can precede the other kind of quote by a

backslash as well, as in '\"'.

To represent a backslash, you must precede it by a backslash, as in '\\', so that the

compiler will not think that the backslash is there to give special meaning to the

character following it.

There are rules having to do with international character sets, which are beyond the

scope of this book, but which affect the meaning of programs with two or more

consecutive question marks in their text. To make it possible to avoid consecutive

question marks, C++ allows \? to represent a question mark, so that you can write

literals such as "What?\?" without consecutive question marks.

A number of control characters, which affect output in various ways, have printable

representations inside literals: newline (\n), horizontal tab (\t), vertical tab (\v),

backspace (\b), carriage return (\r), form feed (\f), and alert (\a). Their actual effect

when written on an output device depends on the implementation.

If you really need a character with a particular internal representation, you can

represent it as \x followed by hexadecimal digits (in upper- or lowercase), or by \

followed by up to three octal digits. So, for example, '\x20' and '\40' both represent the

character whose internal representation is decimal 32 (20 in hex, 40 in octal). On

implementations based on the ASCII character set, this character is the same as ' '.

The most common use of this representation—and the only one you will see in many

programs—is that '\0' is the character whose value is zero.

A.2.2 Floating point

C++ has three floating-point types, called float, double, and long double in order of

nondecreasing precision. The implementation is allowed to implement float with the same

precision as double, or double with the same precision as long double. Every

implementation is required to offer at least six significant (decimal) digits in the float type and

ten in the double and long double types. Most implementations offer only six significant digits

for float and fifteen for double.

Floating-point literals: A floating-point literal is a nonempty sequence of digits with an

exponent at the end, a decimal point somewhere in it, or both. Like integer literals,

floating-point literals do not begin with a sign; -3.1 is an expression, not a literal. The decimal

point may be at the beginning, middle, or end of the sequence of digits, or it may be omitted

entirely if there is an exponent. The exponent is e or E, followed by an optional sign, and one

or more digits. The exponent is always interpreted in decimal.

For example, 312E5 and 31200000. represent the same number, but 31200000 is an integer

literal, not a floating-point literal. As another example, 1.2E-3 represents the same number as

.0012 or, for that matter, 0.000012e+2.

Floating-point literals normally have type double. If you want a literal to have type float, you

can append f or F; if you want it to have type long double, you can append l or L.

A.2.3 Constant expressions

A constant-expression is an expression of integral type with a value that is known at compile

time. The operands in a constant-expression can contain only literals, enumerators, const

variables, or static data members of integral type that are initialized from

constant-expressions or sizeof expressions. The expressions may not contain functions, class

objects, pointers, or references and are not allowed to use assignment, increment,

decrement, function-call, or comma operators.

A constant-expression can appear wherever a constant is is expected. Examples include

dimensions in array declarations (§10.1.3/174), labels in switch statements (§A.4/309), and

initializers for enumerators (§A.2.5/305).

A.2.4 Conversions

Conversions happen as needed to bring the operands of each operator to a common type.

When there is a choice, conversions that preserve information are preferred over those that

lose information. Moreover, conversion to unsigned types is preferred to conversion to signed

types, all arithmetic on short integers or characters implies conversion to int or longer, and

floating-point arithmetic implies conversion to double or longer.

The simplest conversions are promotions. Promotions allow values of a smaller type (e.g.,

char) to be promoted to a larger, related type (e.g., int); they preserve the sign of the initial

value. Integral promotions convert values of char, signed char, unsigned char, short, and

unsigned short to int, if the values will fit, and to unsigned int otherwise. Wide characters

and enumeration types (§A.2.5/305) are promoted to the smallest int that can represent all the

values in the underlying type. The types int, unsigned int, long, and unsigned long are tried

in order, bool is promoted to int, and float is promoted to double.

Conversion of an integral type to a floating-point type preserves as much precision as can be

represented on the machine hardware.

Converting a larger signed value (e.g., long) to a shorter value (e.g., short) is implementation

defined. Converting a larger unsigned value to a shorter value is modulo 2n, where n is the

number of bits in the shorter type. Converting a floating-point value to an integral type

truncates by discarding the fractional part. The behavior is undefined if the truncated value

doesn't fit.

Pointers, integral types, and floating-point values can be converted to bool. If the value is 0

then the resulting bool is false, otherwise, it is true, bools can be converted to the other

types; true is converted as a value of 1 and false as 0.

A constant-expression (§A.2.3/303) that evaluates to 0 may be converted to a pointer.

Any pointer can be converted to a void*. Also, a pointer to nonconst can be converted to a

pointer to const—similarly for a nonconst reference. A pointer or reference to an object of a

type that was publicly derived may be converted to a pointer or reference to any of its base

classes.

Arithmetic conversions: Because the operands can be integral or floating point, and signed

or unsigned, it can be a little tricky to figure out the type of the result of an arithmetic

operation. The rules for doing so are called the usual arithmetic conversions, and work as

follows:

If either operand is floating point, the result is floating point, with the precision of the

most precise operand.

Otherwise, if either operand is unsigned long, then so is the result.

Otherwise, if one operand is long int and the other is unsigned (any unsigned type but

unsigned long, which would force the result to be unsigned long by the previous

rule), then the result depends on the implementation: If the range of long int contains

the range of unsigned int, then the result is long int; otherwise, it is unsigned int.

Otherwise, if either operand is long int, the result is long int.

Otherwise, the operands must both be signed integers of int type or shorter, and the

result is int.

One consequence of these rules is that the result of an arithmetic operation is never short or

char, either signed or unsigned. All arithmetic is done only on int or wider types.

A.2.5 Enumerated types

An enumerated type specifies a set of integral values. Objects of the type may take on only

values specified by the type:

enum enum-name {

enumerator [, enumerator] ...

};

enum-names are type-names and can be used where a type-name is expected.

Variables of the enum-name type can have values only from the list of enumerators:

enumerator: identifier [= constant-expression]

Unless specified, the values of enumerated types correspond to consecutive integers, starting

from zero. It is also possible to state explicit values for the enumerators. The initializers must

have integral (§A.2.1/300) type, and a value that the compiler can determine during

compilation (§A.2.3/303). If a value of an enumerated type is used in a context that requires

an integer, the value will be converted automatically.

A.2.6 Overloading

More than one function can have the same name, provided that the functions differ in type or

number of parameters.

Calling an overloaded function implies a compile-time check to determine which of the set of

overloaded functions should be called. The function to call is determined by comparing the

actual arguments at the call with the types of the formal parameters. The function that best

matches the actual arguments is selected. To be the best match, a function must be a better

match than the others on one or more arguments and no worse in any argument.

The best match for any particular argument is defined as follows:

An exact match (the argument types are identical) is best.

A match using promotions (§A.2.4/303) is better than a match using built-in

conversions, which is better than a match using conversions defined by a class type

(§12.2/213 and §12.5/222).

It is an error if there is more than one function that best matches the call.

A.3 Expressions

C++ inherits a rich expression syntax from C, to which it adds operator overloading (§A.3.1/308). Operator overloading allows program

authors to define the argument and return types and meaning of operators, but not their precedence, valence (number of operands), or

associativity, nor the meaning of built-in operators on operands of built-in types. In this section we will describe—with a few

additions—the operators as they apply to built-in types.

Every operator yields a value, the type of which depends on the types of its operands. In general, if the operands have the same type,

that is the type of the result. Otherwise, standard conversions are performed to bring the types to a common type (§A.2.4/303).

An lvalue is a value that denotes a nontemporary object, hence it has an address. Certain operations are valid only for lvalues, and

some operations yield lvalues. Every expression yields a value; some expressions also yield lvalues.

Only three operators guarantee the order of evaluation for their operands:

&& The right operand is evaluated only if the left operand is true.

|| The right operand is evaluated only if the left operand is false.

? : Only one expression after the condition will be evaluated. The expression after the ? is evaluated if the condition is true;

otherwise, the expression after the : is evaluated. The result is the expression that was evaluated; it is an lvalue if both expressions

were lvalues of the same type.

For the other operators, aside from precedence rules, order of evaluation is not guaranteed. That is, the compiler is permitted to

evaluate operands in any order. Parentheses can be used to override the default precedence, but explicit temporaries are required to

control the order of evaluation completely.

Each operator has a specified precedence and associativity. In the following table, we summarize all the operators in order by

precedence. When several operators are grouped together, they share the same precedence and associativity. Each grouping

introduces a new level of precedence. This table expands the one first presented in Chapter 2 and includes all the operators:

terminal Identifier or literal constant; identifiers are lvalues, literals are not

C::m The member m from class C

N::m The member m from namespace N.

::m The name m at global scope.

x[y] The element in object x indexed by y. Yields an lvalue.

x->y The member y of the object pointed to by x. Yields an lvalue.

x.y The member y of object x. Yields an lvalue if x is an lvalue.

f(args) Call function f passing args as argument(s).

x++ Increments the lvalue x. Yields the original value of x.

x-- Decrements the lvalue x. Yields the original value of x.

*x Dereferences the pointer x. Yields the object pointed to as an lvalue.

&x The address of the object x. Yields a pointer.

-x Unary minus. May be applied only to expressions of numeric type.

!x Logical negation. If x is zero, then !x is true, otherwise false.

~x Ones complement of x. x must be an integral type.

++x Increments the lvalue x. Yields the incremented value as an lvalue.

--x Decrements the lvalue x. Yields the decremented value as an lvalue.

sizeof(e) The number of bytes, as a size_t, consumed by expression e.

sizeof(T) The number of bytes, as a size_t, consumed by objects of type T.

T(args) Constructs a T object from args.

new T Allocates a new, default-initialized object of type T.

new T(args) Allocates a new object of type T initialized by args.

new T[n] Allocates an array of n default-initialized objects of type T.

delete p Frees object pointed to by p.

delete [] p Frees the array of objects pointed to by p.

x * y Product of x and y.

x / y Quotient of x and y. If both operands are integers,

the implementation chooses whether to round toward 0 or -∞.

x % y x - ((x / y) * y) .

x + y Sum of x and y, if both operands are numeric.

If one operand is a pointer and the other is integral,

yields a pointer to a position y elements after x.

x - y Result of subtracting y from x if operands are numeric.

If x and y are pointers, yields the distance, in elements, between them.

x >> y For integral x and y, x shifted right by y bits; y must be non-negative.

If x is an istream, reads from x into y and returns lvalue x.

x << y For integral x and y, x shifted left by y bits; y must be non-negative.

If x is an ostream, writes y into x and returns lvalue x.

x relop y Relational operators yield a bool indicating the truth of the relation.

The operators (<, >, <= , and >=) have their obvious meanings.

If x and y are pointers, they must point to the same object or array.

x == y Yields a bool indicating whether x equals y.

x != y Yields a bool indicating whether x is not equal to y.

x & y Bitwise and. x and y must be integral.

x ^ y Bitwise exclusive or. x and y must be integral.

x | y Bitwise or. x and y must be integral.

x && y Yields a bool indicating whether both x and y are true.

Evaluates y only if x is true.

x || y Yields a bool indicating whether either x or y is true.

Evaluates y only if x is false.

x = y Assigns the value of y to x. Yields x as its (lvalue) result.

x op= y Compound assignment operators. Equivalent to x = x op y,

where op is an arithmetic, bitwise, or shift operator.

x ? y1 : y2 Yields y1 if x is true; y2 otherwise.

Only one of y1 or y2 is evaluated.

y1 and y2 must be of the same type.

If y1 and y2 are lvalues, the result is an lvalue.

The operator is right-associative.

throw x Signal an error by throwing value x.

The type of x determines which handler will catch the error.

x , y Evaluates x, discards the result, then evaluates y. Yields y.

A.3.1 Operators

Most of the built-in operators may be overloaded. The throw, scope, dot, and conditional operator (the ? : operator) may not be

overloaded. All of the other operators may be. §11.2.4/192 describes how to define an overloaded operator.

The postfix increment/decrement operator is distinguished from the prefix version by being defined as taking a dummy, unused

parameter. That is, to overload the postfix operators, we write

class Number {

public:

 Number operator++(int) { /* function-body */ }

 Number operator--(int) { /* function-body */ }

};

The most commonly overloaded operators include the assignment and index operator, the shift operators used to do input-output with

ostreams and istreams, and the operators used to implement iterators summarized in §B.2.5/317.

A.4 Statements

Like most programming languages, C++ distinguishes between declarations, expressions,

and statements. In appropriate contexts, declarations and statements can be nested within

other declarations and statements, but neither can be nested inside an expression. Every

statement ultimately appears inside the definition of a function, where it forms part of what

happens when that function is called.

Unless otherwise specified, the statements that constitute a function are executed in the order

in which they appear. Exceptions include loops; calls to functions; the goto, break, and

continue statements; and the try and throw statements associated with exception handling.

Statements are written in free form. Beginning a new line in midstatement does not affect the

statement's meaning. Most statements end with semicolons—the main exception is the block

(which begins with { and ends with }).

;

Null statement; has no effect when executed.

e;

Expression statement; evaluates e for its side effects.

{ }

Statement block; executes statements in the block in sequence. Declarations in the block

persist (only) until closing brace.

if (condition) statement1

Evaluates condition and executes statementl if condition is true.

if (condition) statement1 else statement2

Evaluates the condition and executes statement1 if condition is true; otherwise executes

statement2. Each else is associated with the nearest unmatched if.

while (condition) statement

Tests condition and executes statement so long as condition is true.

do statement while (condition) ;

Executes statement and then tests condition. Continues executing statement until

condition is false,

for (init-stmt condition; expression) statement

Executes init-stmt once on entry to the loop and then tests condition. If condition is true,

executes statement and then executes expression. Continues testing condition, followed

by statement and expression, until condition is false. If init-stmt is a declaration, then

the scope of the variable is the for statement itself.

switch (expression) statement

In practice, statement is almost always a block that includes labeled statements with labels

of the form

case value:

where each value must be a distinct integral constant expression (§A.2.3/303). In addition,

the label

default:

may appear, but no more than once. Executing a switch statement evaluates expression

and jumps to the case label whose value matches it. If there is no match, control passes to

the default: label, if any, or to the point immediately after the entire switch statement.

Because case labels are just labels, control will flow from one to the next unless the

programmer takes explicit action to prevent it from doing so. The usual such action is to use

a break statement before each case label after the first.

break;

Jumps to the point immediately after the end of the nearest enclosing while, for, do, or

switch statement.

continue;

Jumps back to the beginning of the next iteration (including the test) in the nearest

enclosing for, while, or do statement.

goto label;

Behaves similarly to such statements in other languages. The target of a goto is a label,

which is an identifier followed by a colon. Labels can have the same names as other entities

without ambiguity. The scope of a label is the entire function in which it appears, which

implies that it is possible to jump from outside a block to inside it. However, such a jump

cannot bypass the initialization of a variable.

try { statements } catch (parameter-1) { statements-1 }

[catch (parameter-2) {statements-2}]...

Executes code in statements that might throw an exception, which should be handled by

the one or more catch clauses that follow. The catch clause handles exceptions whose

thrown value is of similar type to the type of parameter-n by executing code in

statements-n. Similar here means that the thrown value has the same type as the

parameter or a type derived from the parameter's type. If the catch has the form catch (...),

then the clause catches any otherwise uncaught exception. If there is no appropriate catch

that matches the type of the exception, then the exception propagates out of the function to

the nearest enclosing try. If there is no appropriate try, then the program terminates.

throw expression ;

Terminates the program or transfers control to a catch clause of a try statement whose

execution is in progress. Passes expression whose type determines which catch clause

can handle the exception. If no appropriate try statement is currently being executed, the

program terminates. Exceptions are often class objects, and are usually thrown in one

function and caught in another.

Appendix B

Library summary

The standard library is a major contribution to the standardization of C++. Throughout this

book, we have relied on the library to write succinct, idiomatic C++ programs. This chapter

reviews the library facilities that we used, and describes some generally useful facilities that

we did not have occasion to use. Each section presents a library class or family of related

classes by showing and explaining how to use the relevant facilities.

In general, the standard library introduces names into namespace std. Programs that use

standard-library facilities must therefore either prefix such names by std:: or make them

generally available with using-declarations. In this appendix, we will not explicitly mention the

need to do so. Accordingly, for example, we shall refer to cout rather than to std::cout.

Our examples generally assume the following meanings for the names shown:

n

A variable or expression that yields a value of any of the integral types

t

A value of type T

s

A string value

cp

A pointer to the initial element of a null-terminated character array

c

A char value

p

A predicate, which is a function that returns bool or a value convertible to bool

os

An output stream

is

An input stream

strm

An input or output stream

b

An iterator that denotes the beginning of a sequence

e

An iterator that denotes (one past) the end of a sequence

d

An iterator that denotes a destination

it

An iterator that denotes an element

B.1 Input-output

Objects of classes istream, ostream, ifstream, and ofstream denote sequential streams, with

an object being bound to a single stream at any one time. Objects of these types cannot be

copied or assigned; therefore, the only way to pass a stream to or from a function is through a

pointer or a reference.

Fundamentals

#include <iostream>

Declares input-output classes and associated operations.

cout

cerr

clog

Objects of type ostream bound to the standard output (cout) and error (cerr, clog) streams.

Output to cout and clog is buffered by default; output to cerr is unbuffered by default.

cin

An object of type istream bound to the standard input stream.

Reading and writing

is >> t

Conventionally, reads a value from is into t after skipping whitespace. The input must be in

a form suitable for conversion to the type of t, which must be a nonconst lvalue. Unsuitable

input causes the request to fail, leaving is in failure state until a call is made to is.clear().

The library defines the input operator for the built-in types and string; class authors are

encouraged to follow suit.

os << t

Conventionally, sends the value of t to os in a format appropriate to the type of t. The library

defines << for built-in types and string; class authors are encouraged to follow suit.

is.get(c)

Reads the next character, even if it is a whitespace character, from is into c.

is.unget()

Backs up the stream is by one character. Useful when we want to read until we hit a

particular character, and then want to leave that character on the stream for subsequent

processing. Only one character of pushback memory is guaranteed.

Iterators

#include <iterator>

Declares input and output stream iterators.

istream_iterator<T> in(is);

Defines in as an input iterator that reads values of type T from is.

ostream_iterator<T> out(os, const char* sep = "");

Defines out as an output iterator that writes values of type T on the stream os, writing sep

as separator value after each element. By default, the separator is a null string, but it can be

a string literal (§10.2/176) or a pointer to a null-terminated array of characters.

File streams

#include <fstream>

Declares facilities for input-output to streams that are attached to files.

ifstream is(cp);

Defines is and attaches it to the file named (in an implementation- dependent manner) by

cp. Class if stream is derived from istream.

ofstream os(cp);

Defines os and attaches it to the file named by cp. Class ofstream is derived from ostream.

Controlling output format

#include <ios>

Defines the streamsize type, which is a signed integral type that is appropriate to represent

the sizes of input-output buffers.

os.width()

os.width(n)

Returns the width (as a streamsize) previously associated with os. Sets the width to n if

given. The next item written on that stream will be padded on the left to the stream's width,

after which the width will be reset to 0.

os.precision()

os.precision(n)

Returns the precision (as a streamsize) previously associated with os. Sets the precision to

n if given. Subsequent floating-point values written on that stream will appear with the given

number of significant digits.

Manipulators

#include <iomanip>

Declares manipulators other than endl, which is declared in <iostream>.

os << endl

Ends the current output line and flushes the stream associated with os.

os << flush

Flushes the stream associated with os.

os << setprecision(n)

os << setw(n)

Equivalent to os.precision(n) and os.width(n) respectively.

Errors and end-of-file

strm.bad()

Returns a bool indicating whether the last operation on strm failed as a result of invalid

data.

strm.clear()

Attempts to reset strm so that it can be used after an invalid operation. Throws ios::failure if

strm cannot be reset.

strm.eof()

Returns a bool indicating whether strm has hit end-of-file.

strm.fail()

Returns a bool indicating whether the last operation on strm failed as a result of hardware

or other system-level problems.

strm.good()

Returns a bool indicating whether the last operation on strm succeeded.

B.2 Containers and iterators

This book covers the sequential containers vector and list, the associative container map,

and class string, which shares many container properties. All containers that provide a

particular operation use similar interfaces for the operation. We summarize the common

operations, followed by operations peculiar to specific containers.

Programmers who want to use sequential containers should use vector, unless there is a

reason to do otherwise. The most common such reason is a desire to insert or delete many

elements other than at the end of the container, an operation that the list class supports much

more efficiently than the vector class does.

B.2.1 Common container operations

All containers and the string class offer the following interface:

container<T>::iterator

An iterator type associated with container<T>, objects of which type may be used to

change the values stored in the container.

container<T>::const_iterator

An iterator type associated with container<T>, objects of which type may be used to read,

but not to modify, the values stored in the container.

container<T>::reverse_iterator

container<T>::const_reverse_iterator

Iterator types that access the container's elements in reverse order.

container<T>::size_type

An unsigned integral type with room for the size of the largest container.

container<T>::value_type

The type of the container elements.

c.begin()

c.end()

Iterators that denote the first element, if any, and one past the last element of c. Both of

these functions yield values that have c's const_iterator or iterator type, depending on

whether c is const.

c.rbegin()

c.rend()

Iterators (of C's const_reverse_iterator or reverse_iterator type, depending on whether c

is const) that access c's elements in reverse order.

container<T> c;

Defines c as an empty container, with c.size() == 0.

container<T> c2(c);

Defines c2 as a container, with c2.size() == c.size(). Each element of c2 is a copy of the

corresponding element of c.

c = c2

Replaces c's elements with copies of c2's elements. Returns c as an lvalue.

c.size()

The number of elements in c.

c.empty()

Returns true if c is empty, false otherwise.

c.clear()

Empties the container c. Equivalent to c.erase(c.begin(), c.end()). After the Operation

completes, c.size() == 0. Returns void.

B.2.2 Sequential containers

In addition to the common container operations, string and the sequential containers (vector

and list) also support the following operations:

container<T> c(n, t);

Defines c to have n elements, each of which is a copy of t.

container<T> c(b, e);

Defines c and initializes it with a copy of the elements in the sequence denoted by the input

iterators b and e.

c.insert(it, t)

c.insert(it, n, t)

c.insert(it, b, e)

Inserts elements into c immediately before it. If c is a vector or string, the operation

invalidates all iterators that refer to or after the insertion point and may cause reallocation,

invalidating all iterators into c. Note that for vector and string, this operation may be slow if

it is far from the end. The first form of insert inserts a copy of t, and returns an iterator that

refers to the newly inserted element. The second form inserts n copies of t, and returns

void. The third form inserts copies of the elements in the sequence denoted by the input

iterators b and e, and returns void. The iterators b and e must not refer to elements of c.

c.erase(it)

c.erase(b, e)

Removes the element denoted by it, or the elements in the range [b, e), from c, invalidating

all iterators referring to erased elements. If c is a vector or string, then all iterators referring

to elements after the erasure are also invalidated. Returns an iterator that refers to the

position immediately after the erasure. Note that erase on a vector or string is slow if the

erasure is far from the end of the container.

c.assign(b, e)

Replaces c's elements with the elements in the sequence denoted by the input iterators b

and e.

c.front()

Returns a reference to the first element of c. Undefined if c is empty.

c.back()

Returns a reference to the last element of c. Undefined if c is empty.

c.push_back(t)

Appends a copy of t to c, increasing the size of c by one. Returns void.

c.pop_back()

Removes the last element from c. Returns void. Undefined if c is empty.

inserter(c, it)

Returns an output iterator that inserts values into c starting immediately before the position

denoted by it. Declared in <iterator>.

back_inserter(c)

Returns an output iterator that can append new values to the end of c by calling

c.push_back. Declared in <iterator>.

B.2.3 Additional sequential operations

Some operations are supported only on those containers for which the operations can be

done efficiently. These include the following:

c[n]

A reference to the nth element of c, where the initial element has position 0. The reference

is const if c is const, and nonconst otherwise. Undefined if n is out of range. Valid only for

vector and string.

c.push_front(t)

Inserts a copy of t at the beginning of c, increasing the size of c by one. Returns void. Not

valid for string or vector.

c.pop_front()

Removes the first element from c. Returns void. Undefined if c is empty. Valid only for list.

front_inserter(c)

Returns an output iterator that can insert new values at the front of c by calling

c.push_front. Declared in <iterator>.

B.2.4 Associative containers

Associative containers are optimized for fast access based on a key. In addition to the general

container operations outlined in §13.2.1/314, associative containers also provide the following:

container<T>::key_type

The type of the container's key. An associative container with keys of type K and elements

of type V has a value_type of pair<const K, V>, not V.

container<T> c(cmp);

Defines c as an empty associative container that uses the predicate cmp to order the

elements.

container c(b, e, cmp);

Defines c as an associative container, initialized with a copy of the values in the sequence

denoted by the input iterators b and e, that uses cmp to order the elements.

c.insert(b, e)

Inserts elements into c from the sequence denoted by the input iterators b and e. The map

container inserts only those elements whose keys are not already in c.

c.erase(it)

Removes the element denoted by the iterator it from c. Returns void.

c.erase(b, e)

Removes elements in the range [b, e) from c. Returns void.

c.erase(k)

Removes all elements with key k from c. Returns the number removed.

c.find(k)

Returns an iterator referring to the element with key equal to k. Returns c.end() if no such

element exists.

B.2.5 Iterators

The standard library relies heavily on iterators to make its algorithms data-structure

independent. Iterators are an abstraction of pointers, in that they provide operations that allow

access to container elements analogous to what pointers allow on array elements.

The standard algorithms are written to assume that iterators meet requirements that the

library classifies into iterator categories. Every library algorithm that uses iterators of a

particular category can work with every library- or user-defined class that provides iterators

that fall into that category.

Output: It is possible to use the iterator to advance through the container one

element at a time, and to write each element visited once and only once. Example:

Class ostream_iterator is an output iterator; and the copy algorithm requires only the

output-iterator properties for its third argument.

Input: It is possible to use the iterator to advance through the container one element

at a time, and to read each element as often as needed before advancing to the next

element. Example: Class istream_iterator is an input iterator, and the copy algorithm

requires only input-iterator properties for its first two arguments.

Forward: It is possible to use the iterator to advance through the container one

element at a time, to revisit elements to which previously remembered iterators refer,

and to read or write each element as often as needed. Example: replace is an

algorithm that requires forward-iterator properties.

Bidirectional: It is possible to use the iterator to move through the container one

element at a time, either forward or backward. Example: list and map provide

bidirectional iterators, and reverse is an algorithm that requires bidirectional iterators.

Random access: It is possible to move through the container using all the operations

supported by pointers. Example: vector, string, and built-in arrays support

random-access iterators. The sort algorithm requires random-access iterators.

All iterator categories support testing for (in)equality. Random-access iterators support all the

relational operations.

Iterator categories can be thought of as cumulative, in the sense that every forward iterator is

also an input iterator and an output iterator, every bidirectional iterator is also a forward

iterator, and every random-access iterator is also a bidirectional iterator. Thus, any algorithm

that accepts any iterator type as an argument will accept a random-access iterator. Class

ostream_iterator and the insert iterator adaptors provide output iterators, and thus can be

used only by algorithms that require only output-iterator operations.

All iterators support the following operations:

++p

p++

Advances p to the next position in the container. ++p returns p as an lvalue after advancing

it; p++ returns a copy of p's previous value.

*p

The element to which p refers. For output iterators, *p may be used only as the left operand

of =, and each distinct value of p may be used in this way only once. For input iterators, *p

may be used only for reading; and the act of incrementing p invalidates all copies that might

have been made of p's previous value. For all other iterator types, *p yields a reference to

the value stored in the container element to which p refers, and p remains valid as long as

the element to which p refers continues to exist.

p == p2

Yields true if p is equal to p2; false otherwise.

p != p2

Yields true if p is not equal to p2; false otherwise.

All iterators other than output iterators also support

p->x

Equivalent to (*p).x

Bidirectional and random-access iterators also support decrement operations:

--p

p--

Advances p backward to refer to the previous element, --p returns p as an lvalue after

advancing it; p-- returns a copy of p's previous value.

Random-access iterators provide all of the "pointer" operations, including the following:

p + n

If n >= 0, then the result is an iterator that refers to a point n positions beyond p. The

operation is undefined if fewer than n - 1 elements follow the element denoted by p. If n <

0, then the result is an iterator that refers to the element -n positions before the element

denoted by p. The operation is undefined unless this element is within range of the

container.

n + p

Equivalent to p + n.

p - n

Equivalent to p + (-n).

p2 - p

Defined only if p and p2 refer to positions in the same container. If p2 >= p, yields the

number of elements in the range [p, p2). Otherwise, yields the negation of the number of

elements in the range [p2, p). The result has typeptrdiff_t (§10.1.4/175).

p[n]

Equivalent to *(p + n).

p < p2

true if p denotes an earlier position in the container than that denoted by p2. Undefined if p

and p2 do not refer to positions in the same container.

p <= p2

Equivalent to (p < p2) || (p == p2).

p > p2

Equivalent to p2 < p.

p >= p2

Equivalent to p2 <= p.

B.2.6 vector

The vector class provides dynamically allocated, type-independent arrays, and supports

random-access iterators. In addition to the common sequential-container operations

(§B.2.1/314 and §B.2.2/315), vector also supports the following:

#include <vector>

Declares the vector class and associated operations.

v.reserve(n)

Reallocates v so that it can grow to accommodate at least n elements without further

reallocation.

v.resize(n)

Reallocates v to hold n elements. Invalidates all iterators referring to elements of v.

Preserves the first n elements. If the new size is less than the old, excess elements are

destroyed. If the new size is greater than the old, new elements are value-initialized

(§9.5/164).

B.2.7 list

The list class provides dynamically allocated, type-independent, doubly linked lists, and

supports bidirectional iterators (unlike vector, which supports random-access iterators). In

addition to the general operations on sequential containers (§B.2.1/314 and §B.2.2/315), list

also supports the following:

#include <list>

Declares the list class and associated operations.

l.splice(it, l2)

Inserts all the elements of l2 into l immediately before the position denoted by it, and

removes those elements from l2. Invalidates all iterators and references into l2. After

completion, l.size() is the sum of the original sizes of l and l2, and l2.size() == 0. Returns

void.

l.splice(it, l2, it2)

l.splice(it, l2, b, e)

Inserts the element denoted by it2, or the elements in the sequence denoted by [b, e), into l

immediately before the position denoted by it, and removes those elements from l2. The

element denoted by it2, or the elements in the range [b, e), must be entirely within l2.

Invalidates iterators and references to the spliced elements. Returns void.

l.remove(t)

l.remove_if(p)

Removes from l all elements with value equal to t, or for which the predicate p yields true.

Returns void.

l.sort(cmp)

l.sort()

Sorts l using <, or the predicate cmp if supplied, to compare elements.

B.2.8 string

The string class provides variable-length character strings and random-access iterators to

access their characters. Although strings aren't true containers, they support the container

operations shown previously (§B.2.1/314 and §B.2.2/315) and can be used with the

algorithms (§B.3/321). In addition, the string class also supports the following:

#include <string>

Declares the string class and associated operations.

string s(cp);

Defines s as a string initialized to a copy of the characters denoted by cp.

os << s

Writes the characters in s onto os. Returns a reference to os.

is >> s

Reads a word from is into s, obliterating s's previous contents. Returns a reference to is.

Words are delimited by a whitespace (space, tab, newline).

getline(is, s)

Reads the input stream is up to and including the next newline, and stores the characters

read, excluding the newline, in s, obliterating s's previous contents. Returns a reference to

is.

s += s2

Appends s2 to s and returns a reference to s.

s + s2

Returns the result of concatenating s and s2.

s relop s2

Returns a bool indicating whether the relational operation is true. The string library defines

all the relational and equality operators: <, <=, >, >=, ==, and !=. Two strings are equal if

their respective elements are equal. If one string is a prefix of the other, then the shorter is

less than the longer. Otherwise, the result is determined by comparing the first pair of

respective characters at which the strings differ.

s.substr(n, n2)

Returns a new string that holds n2 characters copied from s, starting at position n.

Undefined if n > s.size(). Copies characters in the range from n to the end of s if n + n2 is

greater than s.size().

s.c_str()

Yields a const pointer to a null-terminated character array that contains a copy of the

characters in s. The array persists only until the next nonconst member function is called on

s.

s.data()

Like c_str, but the array is not null terminated

s.copy(cp, n)

Copies up to the first n characters, without null termination, from s into a user-supplied

character array denoted by cp. It is the caller's responsibility to ensure that there is room for

at least n characters.

B.2.9 pair

Class pair<K, V> provides an abstraction for a pair of values of type K and V respectively.

The operations on pair<K, V> include the following:

#include <utility>

Declares the pair class and associated operations.

x.first

The first element of the pair named x.

x.second

The second element of the pair named x.

pair<K, V> x(k, v);

Defines x as a new pair composed of elements with types K and V, and values k and v, so

that x. first has type K and x. second has type V. Note that to declare a pair explicitly, you

must know the types of its members.

make_pair(k, v)

Generates a new pair<K, V> with element values k and v. Note that it is not necessary to

know the types of k and v to use this form.

B.2.10 map

Class map provides dynamically allocated, type-independent associative arrays. It uses pair

as an auxiliary class to store the (name, value) pairs that are the map's elements. Iterators are

bidirectional. Each map holds values of type V associated with keys of type const K.

Accordingly, the value stored in an element of a map can be changed, but the key cannot be

changed. In addition to the general container operations (§B.2.1/314) and those on

associative containers (§B.2.4/316), map also supports the following:

#include <map>

Declares the map class and associated operations.

map<K, V, P> m(cmp);

Defines m as a new, empty map, which holds values of type V associated with keys of type

const K, and uses predicate cmp of type P to compare elements when inserting them into

the map.

m[k]

Yields a reference to the value in m at the position indexed by k. If no such element exists,

then a value-initialized element (§9.5/164) of type V is inserted into the map. Because

evaluating m[k] can potentially change m's contents, m must not be const.

m.insert(make_pair(k, v))

Inserts value v into m at the position indicated by the key k. If a value already exists with

key k, then the associated value is not changed. Returns a pair<map<K, V>::iterator,

bool> with a first component that refers to the element with the given key, and a second

component that indicates whether a new element was inserted. Note that make_pair

generates a pair<K, V>, which is converted by insert to a pair<const K, V>.

m.find(k)

Returns an iterator referring to the element, if any, with key k. Returns m.end() if no such

element exists.

*it

Yields a pair<const K, V>, which contains the key, and the value with which that key is

associated, at the position denoted by it. Accordingly, it->first has type const K, and

represents the key, and it->second has type V and represents the corresponding value.

B.3 Algorithms

The standard library includes many generic algorithms, which are written to operate on

iterators, thereby gaining independence from the particular data structures on which they

operate and the types stored therein. Note that associative containers have iterators that refer

to compound types such as pair<const K, V>. Therefore, using these algorithms with

associative containers requires careful thought.

Most algorithms operate on sequences delimited by pairs of iterators in which the first iterator

denotes the first element in the sequence and the second denotes one past the last element.

Except as noted, all algorithms are defined in the <algorithm> header.

#include <algorithm>

Includes declarations for generic algorithms.

accumulate(b, e, t)

accumulate(b, e, t, f)

Defined in the <numeric> header. Creates a temporary object obj with the same type and

value as t. For each input iterator it in the range [b, e), evaluates ob = obj + *it or obj =

f(obj, *it), depending on which form of accumulate was called. The result is a copy of obj.

Note that because + may be overloaded, even the first form of accumulate may operate on

types other than the built-in arithmetic types. For example, we can use accumulate to

concatenate all the strings in a container.

binary_search(b, e, t)

Returns a bool indicating whether the value t is in the (sorted) sequence delimited by the

forward iterators b and e.

copy(b, e, d)

Copies the values in the sequence denoted by the input iterators b and e into the

destination indicated by output iterator d. The function assumes that enough space exists in

the destination to hold the values being copied. Returns a value that denotes a position one

past the last destination element.

equal(b, e, b2)

equal(b, e, b2, p)

Returns a bool indicating whether the elements in the sequence denoted by the input

iterators b and e are equal to the elements in a sequence of the same size beginning at the

input iterator b2. Uses the predicate p for the test, or the == operator if p is not supplied.

fill(b, e, t)

Sets the elements in the sequence denoted by the input iterators b and e to the value t.

Returns void.

find(b, e, t)

find_if(b, e, p)

Returns an iterator denoting the first occurrence of the value t, or for which the predicate p

is true (if p is supplied), in the sequence denoted by the input iterators b and e. Returns e if

no such element exists.

lexicographical_compare(b, e, b2, e2)

lexicographical_compare(b, e, b2, e2, p)

Returns a bool indicating whether the sequence of elements in the range [b, e) is less than

the sequence of elements in the range [b2, e2), using the predicate p for element

comparisons, or the < operator if p is not supplied. If one of the sequences is a prefix of the

other, then the shorter sequence is considered to be less than the other. Otherwise, the

result is determined by comparing the first pair of respective elements at which the

sequences differ. Iterators b, e, b2, and e2 need only be input iterators.

max(t1, t2)

min(t1, t2)

Returns the larger (for max) or smaller (for min) of t1 and t2, both of which must be of the

same type.

max_element(b, e)

min_element(b, e)

Returns an iterator denoting the largest (smallest) element in the sequence denoted by the

forward iterators b and e.

partition(b, e, p)

stable_partition(b, e, p)

Partitions the sequence denoted by the bidirectional iterators b and e so that elements for

which the predicate p is true are at the front of the container. Returns an iterator to the first

element for which the predicate is false, or e if the predicate is true for all elements. The

stable_partition function maintains the input order among the elements in each partition.

remove(b, e, t)

remove_if(b, e, p)

Rearranges the elements in the sequence denoted by the forward iterators b and e so that

elements whose values do not match t, or for which the predicate p returns false (if p is

supplied), are coalesced at the beginning of the associated sequence. Returns an iterator

one past the unremoved elements.

remove_copy(b, e, d, t)

remove_copy_if(b, e, d, p)

Like remove, but it puts a copy of the elements that do not match t, or for which the

predicate p is false, (if p is supplied), into the destination denoted by the output iterator d.

Returns a value one past the last destination element. The destination is assumed to be

large enough to hold the values copied. The elements in the sequence denoted by the

iterators b and e are not moved. Thus, b and e need only be input iterators.

replace(b, e, t1, t2)

replace_copy(b, e, d, t1, t2)

Replaces each element with value t1 by the value t2 in the sequence denoted by the

forward iterators b and e. Returns void. The second form copies the elements, replacing t1

with t2, into the sequence denoted by the output iterator d and returns a value one past the

last destination element. For the copy version b and e need only be input iterators.

reverse(b, e)

reverse_copy(b, e, d)

The first form reverses the elements in the sequence denoted by the bidirectional iterators b

and e by swapping pairs of elements, and returns void. The second form stores the

reversed sequence in the destination starting at the output iterator d, and returns a value

one past the last destination element. As usual, the destination must have enough room to

hold the values in the sequence.

search(b, e, b2, e2)

search(b, e, b2, e2, p)

Returns a forward iterator positioned on the first occurrence, in the sequence denoted by

the forward iterators b and e, of the subsequence denoted by the forward iterators b2 and

e2. Uses the predicate p for the test, or the == operator if p is not supplied.

transform(b, e, d, f)

transform(b, e, b2, d, f)

If b2 is not supplied, f must take one argument; transform calls the function f on the

elements in the sequence denoted by the input iterators b and e. If b2 is supplied, f must

take two arguments, which are taken pairwise from the sequence denoted by b and e and

the sequence of the same length beginning at the input iterator b2. In either case,

transform puts the sequence of results from the function into the destination denoted by the

output iterator d, and returns a value one past the last destination element. As usual, the

destination is assumed to be large enough to hold the generated elements. Note that d is

permitted to be equal to b or b2 (if supplied), in which case the result replaces the given

input sequence.

sort(b, e)

sort(b, e, p)

stable_sort(b, e)

stable_sort(b, e, p)

Sorts, in place, the sequence defined by the random-access iterators b and e. Uses the

predicate p for the test, or the < operator if p is not supplied. The stable_sort functions

maintain the input order among equal elements.

unique(b, e)

unique(b, e, p)

Rearranges the sequence delimited by the forward iterators b and e so that the first

instance of each subsequence of consecutive equal elements is moved to the beginning of

the container. Returns an iterator positioned on the first element that should not be

considered as part of the result (or e if all consecutive pairs of input elements are unequal).

Uses the predicate p for the test, or == if p is not supplied.

unique_copy(b, e, d, p)

Copies the sequence delimited by input iterators b and e into the sequence beginning at the

position denoted by the output iterator d, eliminating any adjacent duplicates in the process.

Returns d after incrementing it by the number of elements copied. As usual, assumes d is

large enough to hold the elements. Uses the predicate p for the test, or == if p is not

supplied.

Accelerated C++ Errata

Last modified 23 September 2004.

Every book has bugs in it, and Accelerated C++ is no exception. This page notes the bugs

that have come to our attention, and the printings in which they were discovered. All of these

errors are corrected in the printing after the one in which they were found, except that errors

noted in the fifth printing were not corrected until the ninth printing, which went to press in

August, 2004.

Please note that because of corrections, page numbers may sometimes differ slightly from

one printing to another. So, for example, if you have a copy of the first printing, and you are

looking for a correction first noticed in the fourth printing, you may find it on the page before or

after the one cited.

Thanks to Walter E. Brown, Don Caldwell, Paolo Carlini, Neil Cerutti, Harry Chung,

David Clark, Anton Doblmaier, Debatosh Debnath, Steven van Dijk, Hans Dulimarta,

Daniel Faber, Attila Feher, Adam Foster, Kevin Goodsell, Seyed H. Haeri, Gregory Haley,

Mogens Hansen, Philip Hibbs, Anto Jurkovic, John Linderman, Greg McClure,

Miguel Martínez de la Torre, Bernd Mohr, Wo-Yip Ng, Nicole McAllister, Brian McNamara,

Frank Mittelbach, Ron Natalie, John Potter, Peter N. Roth, Andreas Scherer, William Simon,

Marc Souaille, Randy Sherman, Ralf Taner, Antoine Trux, Alex Tuzlukov, Abraham Walfish,

Conrad Weisert, and Han Xu for pointing them out!

Technical errors in the fifth printing

Pages 32 and 307: The precedence table should say that the assignment and

conditional operators have the same precedence and are right-associative.

Page 173: In the second line from the end of the page, *beg should be *begin (twice).

Page 179: The text should say that it is possible for argcto be zero.

Pages 191-192, 314: The types that containers are required to provide include

difference_type

Page 223: In the fourth line of the first complete paragraph, iostream should be

istream.

Page 224: In the fifth line after the second program example, string should be Str.

Page 304: The text incorrectly states that float is promoted to double as part of the

standard arithmetic conversions.

Clarifications in the fifth printing

Page 24: The discussion at the bottom of the page should say explicitly that treating a

bool value as a number yields 1 if the bool is true and0 if the bool is false.

Page 216: In the code example at the bottom of the page, the call to

s.data.push_back is not the only compile error, because it is not the only reference to

s.data; there is another reference near the beginning of the example.

Typographical details in the fifth printing

Page 57: In the fourth paragraph, the first sentence should end with ``end-of-file''

instead of ``end-of file.''

Page 111: In the last full paragraph, the variable named didn't should be didnt.

Page 128: Near the bottom of the page, the sentence that refers to ``the data

structure that split returns'' should instead be referring to xref.

Page 154: There is a comma missing in the argument list of the call to copy in the last

line of exercise 8-6.

Page 219: The constructor of class Str should have parameters named b and e, rather

than i and j, to match the version on page 212.

Technical errors in the fourth printing

Page 34: In exercise 2-10, the comparison k != n should be k != 10.

Page 70: The invariant near the bottom of the page should refer to maxlen rather than

max.

Page 174: In the third line from the bottom, coord + 1 should be coords + 1.

Page 183: In the comment in the code example near the bottom of the page, p should

be *p.

Page 190: In the last code example on the page, size_type should be std::size_t. Note

that the similar example on page 193 is correct as it stands, because size_type has

now been defined.

Page 239: The call to students[i].grade() is dynamically bound, not statically bound.

However, because the type of students[i] is known during compilation, the effect is the

same as that of static binding.

Page 264: The first code example should call s1.read(cin) rather than read(cin, s1),

and similarly for s2.

Pages 265-266: The text sometimes mentions the standard vector class when it

should refer to the Vec class that we are defining.

Page 280: The last code example has a spurious semicolon at the end.

Page 281: The first complete paragraph should note that Pic must also be a friend.

Page 304: The list of conversions is missing an entry, just before the last one. It

should say: ``Otherwise, if either operand is unsigned int, the result is unsigned int.'' It

also needs to mention the integral promotions.

Page 307: The description of compound assignment should say x op= y instead of x

op= x

Typographical details in the fourth printing

The code examples are not consistent about whether to put a space after template;

that is, whether to say
template<class T> class Vec { /* ... */ };

or
template <class T> class Vec { /* ... */ };

Fortunately, it's correct either way.

Clarifications in the fourth printing

Pages 32 and 307: The description of compound assignments in the table should

enumerate the operators explicitly. The description of % should say that the operands

must be integers.

Page 100: In exercise 5-9, it's not clear whether a word containing mixed-case letters

is uppercase or lowercase. The exercise should be to write all the words in the input

that do not contain any uppercase letters, followed by all the words that contain one or

more uppercase letters.

Page 179: The program at the bottom of the page can be made easier to understand

by writing argv[1] as a special case, and then printing a space before each

subsequent argument, if any.

Pages 260 and 263: The initializations of p and refptr are clearer if they appear in the

same order as the definitions of the data members themselves.

Technical errors in the third printing

Page 47: The invariant in the comment on the third line of the page should say that

homework contains all the homework grades read so far, rather than all the grades.

Similarly for the invariant in the comment near the bottom of page 70.

Page 100: In exercise 5-6, v should be students throughout.

Page 136: In the first complete paragraph on the page, the third sentence should refer

to ``the body'' rather than ``the push_back.''

Pages 167, 238, 241, 248, and 258: students.name.size() should be

students.name().size() instead.

Page 186: <ifstream> should be <fstream>

Page 191: Containers need to define reference and const_reference as well as

value_type.

Page 203: In the last paragraph before the code example, size and end need to know

about the new member as well.

Page 206: The comments in the code example should reflect that the definitions of

size and end are changed.

Page 209: The last sentence of the second paragraph swaps the descriptions of limit

and avail.

Page 213: On the third line of the first code example, the comment should refer to d2

instead of d.

Page 222: The declaration of operator double in the first code example should have a

const immediately before the semicolon.

Pages 258 and 259: In the example that spans those pages, runtime_error should be

std::runtime_error.

Pages 261 and 263: The definition of refptr should mention std::size_t rather than

size_t.

Page 264: In the last example before the start of section 14.4, run_time_error should

be runtime_error.

Pages 271, 273, and 276: Class Pic_base should have an empty virtual destructor.

Page 277: In the sentence before the last code example, vector<char> should be

vector<string>.

Page 281: The second code example should refer to std::max rather than just max.

Clarifications in the third printing

Page 28: It should be explicit that we are talking about the values that r takes on in

the loop bodies, not what value it might have after the loop completes.

Page 73: Exercise 4-6 should ask the reader to rewrite the read and grade functions

as well as the Student_info structure.

Page 154: The xref function doesn't return a vector<string>, so exercise 8-5 should

describe the current behavior as ``placing their entire output in a data structure.''

Page 165: The discussion at the bottom of the page should say explicitly that

initialization takes place in the order of declaration, not in the order of the

member-initializer list.

Page 184: The discussion of off-the-end pointers in the third paragraph of 10.6.2

should refer to the earlier discussion on page 149.

Page 190: The comments in the first example should make it clear that the definitions

use the cited constructors, rather than defining them.

Page 191: In section 11.2.3, paragraph 2, the first sentence refers to ``the type of the

objects that the container stores.'' It is clearer to refer to ``the type of each object that

the container stores.''

Page 258: In order to use the Handle class, it is necessary to change the Core class

to allow Handle<core> to use the clone member, either by making Handle<core> a

friend of Core or by making the clone member public.

Page 306: The description of operators that guarantee order of evaluation should

include the comma operator (correctly described at the bottom of the table on page

307).

Typographical details in the third printing

Page 128: In the penultimate comment in the code example, ``lines numbers'' should

be ``line numbers.''

Page 164: The last line of the fourth paragraph has an extra word ``a'' in it.

Page 192: In the last line of the page, ``It the operator...'' should be ``If the operator...''

Page 247: There should not be a space between ``friend'' and ``ship'' at the end of the

first complete paragraph.

Pages 292 and 294: The chapter title at the top of the page is missing a question

mark.

Page 296: In the paragraph beginning ``C++ inherits its'' near the middle of the page,

there is a missing word ``by'' after ``followed'' in the third line.

Page 297: The first line of the definition of type-specifier should end with an ``or'' (|)

symbol.

Page 303: The word ``is'' appears twice in a row in section A.2.3, paragraph 2, line 1.

Technical errors in the second printing

Page 22, first paragraph, last line: ``true'' should be ``false''

Page 32, near the end of the table: x op= x should be x op= y.

Page 33: The equivalence between for and while statements is not exact if the

statement is or contains a continue statement.

Page 34: In the description

if (<condition>) statement; else statement2

there should be no semicolon, because the statement will usually have one of its own.

Page 48, just before 3.3: The execution time of sort is guaranteed in the average

case, but it is possible for it to run more slowly with pathological input.

Page 64: The 11th line from the bottom is missing some characters:
<< string(maxlen + 1 - students[i].name.size(), '

should be
<< string(maxlen + 1 - students[i].name.size(), ' ');

Page 70, 7 lines from the bottom: vs should be students in the comment on that line.

Page 97: erase returns an iterator referring to the position immediately after the

erasure. c[n] refers to a container element, not necessarily a character.

Page 116, two paragraphs before the beginning of section 6.3: The first reference to v

in that paragraph should refer to s.homework instead, as should the reference to v in

the comment in the code example. The last two references to should refer to nonzero

instead.

Page 120: The last code example should call students.erase, not v.erase.

Page 135: In the last line of the first paragraph of section 7.4.4, < should be <=.

Page 190, last line on the page: vector should be Vec.

Page 204, code example: The second parameter for construct should be const T&,

not T.

Page 205, the declarations of uninitialized_copy and uninitialized_fill should be

template<class In, class Out> Out uninitialized_copy(In, In, Out);

template<class Out, class T> void uninitialized_fill(Out, Out, const T&);

where In is an input-iterator type and Out is a forward-iterator type.

Page 213, just after the last code example: The second sentence should say ``The

first statement defines t...'' instead of referring to s.

Page 257, two lines before the beginning of section 14.1.2: student.grade() should be

(*student).grade().

Page 283, last example: The width function should call std::max explicitly instead of

plain max.

Page 284, last example: The height function should call std::max explicitly instead of

plain max.

Page 330, the index entry for http://www.accu.org should refer to page 294 (where the

URL actually appears) rather than page 293 (where the section begins that contains

the URL).

Page 307: Near the bottom of the table, x op= x should be x op= y

Clarifications in the second printing

Page 44 uses the term ``(one past)'' without explaining it. The idea is that if c is a

container, c.end() does not refer to the last element, but rather to the imaginary

location where the element after the last one would be if it existed.

Page 76, last paragraph before section 5.1.1: The text should make it clear that

assigning a new value to students overwrites the previous contents.

Page 103, immediately after the first example: ``third argument is an iterator'' is

clearer if replaced by ``third parameter is required to be an iterator''.

Page 107, just after the last example: It is clearer to say that static local variables are

``constructed'' than that they are ``created,'' because the storage that the variable

occupies is supposed to be allocated when the program begins execution.

Page 135: The explanation of nrand could be clearer.

Page 142: The second paragraph of section 8.1.2 could be clearer.

Page 151: The description of ostream_iterator does not make it clear that the second

argument must have type const char*. In particular, it cannot be a string or a character

literal.

Page 154: In exercise 8-2, equal(b, e, d) would be clearer as equal(b, e, b2).

Page 195, just before the last code example: It should be clearer that we are referring

to the copy constructor, as opposed to other constructors.

Page 201, second paragraph of section 11.3.5: The second sentence should be

clearer.

Page 202, last line before the example: the word ``copy'' is ambiguous.

Typographical details in the second printing

In various places, container<T> should really appear as container<T> because there

is no standard type named container; instead, container refers to the name of any

standard-library container class.

Page 11: The second-to-last paragraph in the section just before 1.2 should have

``Our'' instead of ``Out'' as its first word.

Page 21: In the line just before the code example, ``what know'' should be ``what we

know''.

Page 45, second paragraph before the diagram, ``average of value'' in the last line of

that paragraph should be ``average value''.

Page 51: In the seventh line from the bottom, the word ``same'' appears twice in

succession.

Page 66: In the fourth line from the bottom, the word ``about'' appears twice in a row.

Page 104: It is useful for the first paragraph to include a reference back to page 88.

Page 139: In the penultimate line, ``constrains'' should be ``constrain.''

Page 152: The penultimate comment in the first code example is in the wrong font.

Page 250, three lines before the last code example: ``(publicly)'' should be

``(publicly)''.

Technical errors in the first printing

The calls to setw, such as the one near the bottom of page 64, do not work as

advertised. The implementations that we used do not implement setw properly for

strings, as we noted in exercise 4-9 (page 74), so we did not discover the problem

during testing.

The most straightforward solution is to replace

cout << setw(maxlen+1) << students[i].name;

by
cout << students[i].name << string(maxlen+1 - students[i].name.size(), ' ');

thereby obviating exercise 4.9 entirely. Alternatively, one could write
cout << setw(maxlen+1) << setiosflags(ios_base::left) << students[i].name <<

resetiosflags(ios_base::left);

which would cause cout to left-justify (i.e. pad on the right) while writing

students[i].name.

Page 32: The definition of % in the table should say x - ((x / y) * y) instead of x - ((x -

y) * y). Ditto for the table on page 307.

Page 35: The using-directive for std::precision shouldn't be there.

Page 36: The program might divide by zero if the student enters no grades.

Discussing this eventuality in the main text would be a diversion, so we've added a

new exercise.

Page 46: The using-directive for std::precision shouldn't be there.

Page 47: The line near the middle of the page reading
: median = homework[mid];

should be
: homework[mid];

Page 54: The phrase ``reference to const double'' near the bottom of the page should

be ``reference to vector of const double.''

Page 60: In the program example, the subexpression grade(students[i]) should be

grade(midterm, final, homework).

Page 73: The description of the width member function should say that the output is

padded on the left, not on the right.

Page 80: In the first code example on the page, vector<Student::info> should be

vector<Student_info>.

Page 95: The comments in the program on this page have "left-hand" and "right-hand"

reversed.

Page 97: The definition container<T> c(); should be container<T> c;

Page 108: The test for i + sep.size() != e in the inner if is redundant, as is the test if (i

!= e) near the end of the program.

Page 115: In the last line of section 6.2.3, median_grade should be grade_aux. The

average_analysis function does not take into account the possibility that a student did

no homework at all. We're going to leave that possibility as an exercise.

Page 121: The description of accumulate is wrong. The function copies t, adds each

element in the range [b, e) to the copy of t, and returns a copy of the modified copy of

t as its result.

Page 147: In the first paragraph in 8.2.4, it isn't really true that forward iterators

prevent us from looking at an element again. What they do is to prevent us from

moving an iterator to the immediately preceding element.

Page 150: In the first sentence of section 8.3, the phrase "separate categories from

output iterators" should be "separate categories from forward iterators."

Page 163: In the last paragraph, the claim that users don't need to know how

Student_info is implemented isn't quite accurate: They don't need to know in order to

write code that uses it, but they do need to know some of the details in order to be

able to prepare input files for the program.

Page 176: The month_lengths array should be defined as

const int month_lengths[] = { /* ... */ };

Page 178: The letters array should be defined as

static const char* const letters[] = { /* ... */ };

because there is no intent ever to change its elements.

Page 195: The call to split(words) in the last line of the first code example should be

split(line).

Page 199: The name blanks should be spaces.

Page 200: The two references to words in the first complete paragraph (the second of

which is in a code example) should refer to line.

Page 220: In the last example on the page, the variables temp and s should be temp1

and greeting, respectively.

Page 221: In the second paragraph of section 12.4, we should be talking about Vec,

not vector. Moreover, in the hypothetical case, p would contain 42 empty rows, not 42

rows of single null characters.

Page 249: Just before the last example, the phrase "version of final in Core" should

be "version of regrade in Core."

Page 250: Near the end of the third line, final should be regrade.

Page 264: In the first example, the last comment should say "changes only s2 and not

s1" instead of "changes only s1 and not s2." In the following example, the call

make_unique(); should be cp.make_unique(); Page 281: in the last line before section

15.2.2, operator>> should be operator<<.

Page 282: In the last example, the last two parameters should be named beg and

end, respectively.

Page 287: In the discussion near the bottom of the page, protected allows access to

the base-class part of any object of the appropriate derived class, not just the

base-class part of the current object. What it does not allow is access to members of

freestanding base-class objects.

Page 292: Just before the sample output, the text describes the grade histogram as

containing asterisks, when it actually contains = symbols.

Clarifications in the first printing

Page 28: The description of the for statement should make it clear that the

init-statement is required to be either a definition or an expression statement.

Page 191: In the first complete paragraph, the two uses of size_t are easier to

understand if they refer to size_type instead, to match the code. The two names refer

to the same type, so the uses are technically correct, but it's easier to understand if

they're changed.

Page 193: The discussion of the size function at the bottom of the page makes it

appear that the type of the difference between two pointers is more important than it

really is. The real point is that although the value of limit - data has type ptrdiff_t,

returning that value from size converts it to size's return type.

Typographical details in the first printing

If a page has any constant-width text in the heading at the top of the page (which can

happen only for odd-numbered pages), the page number is very slightly smaller than

it should be. The affected page numbers are 3, 85, 87, 89, 91, 93, 95, 103, 105, 107,

109, 163, 179, 189, 191, 193, 215, 217, 219, 233, and 235.

Page xii: "language" should be "language" near the end of the third paragraph.

Page 24: Shortly before 2.4.1.2, change "such the ones" to "such as the ones."

Page 30: Change string::size_type to int in the two for statements at the bottom of the

page.

Page 34: The program in exercise 2-10 should have a return 0; statement at the end.

Page 45: Near the bottom, change "it should easy" to "it should be easy."

Page 72: The comments in the last example on the page have their beginning slashes

in italic font rather than constant-width font.

Page 158: The word "have" appears twice in a row in the first paragraph after the

numbered list near the top of the page.

Page 162: The word "the" appears twice in a row in the first complete paragraph on

this page.

Page 164: The word "be" appears twice in a row in paragraph 5, line 3.

Page 167: In the second line of the paragraph beginning "Protection labels,"

"accessible" should be "accessible."

Page 178: In the second complete paragraph from the end of the page, "determine

the its type" should be "determine its type."

Page 199: Immediately before the example, "in of an expression" should be "in an

expression." In the last complete paragraph, the word "the" appears twice in a row.

Page 203: On the first line of the page, "such this one" should be "such as this one."

Page 224: Near the middle of the page, "does not to prevent" should be "does not

prevent."

Page 253: Near the end of the second paragraph, "use the a single" should be "use a

single."

Page 260: In the first line of the first complete paragraph, "we would like be able"

should be "we would like to be able."

Page 262: In the second paragraph from the end, ``such Student_info'' should be

``such as Student_info.''

Page 283: In the first complete paragraph, "an ordinary member functions" should be

"an ordinary member function."

Page 289: In the fourth line, "parameter, type" should be "parameter type."

Page 307: The table extends beyond the nominal right margin.

	Cover
	Table of Contents
	Copyright
	The C++ In-Depth Series
	Preface
	Dedication
	Chapter 0 Getting Started
	0.1 Comments
	0.2 #include
	0.3 The main function
	0.4 Curly braces
	0.5 Using the standard library for output
	0.6 The return statement
	0.7 A slightly deeper look
	0.8 Details

	Chapter 1 Working with strings
	1.1 Input
	1.2 Framing a name
	1.3 Details

	Chapter 2 Looping and counting
	2.1 The problem
	2.2 Overall structure
	2.3 Writing an unknown number of rows
	2.4 Writing a row
	2.5 The complete framing program
	2.6 Counting
	2.7 Details

	Chapter 3 Working with batches of data
	3.1 Computing student grades
	3.2 Using medians instead of averages
	3.3 Details

	Chapter 4 Organizing programs and data
	4.1 Organizing computations
	4.2 Organizing data
	4.3 Putting it all together
	4.4 Partitioning the grading program
	4.5 The revised grading program
	4.6 Details

	Chapter 5 Using sequential containers and analyzing strings
	5.1 Separating students into categories
	5.2 Iterators
	5.3 Using iterators instead of indices
	5.4 Rethinking our data structure for better performance
	5.5 The list type
	5.6 Taking strings apart
	5.7 Testing our split function
	5.8 Putting strings together
	5.9 Details

	Chapter 6 Using library algorithms
	6.1 Analyzing strings
	6.2 Comparing grading schemes
	6.3 Classifying students, revisited
	6.4 Algorithms, containers, and iterators
	6.5 Details

	Chapter 7 Using associative containers
	7.1 Containers that support efficient look-up
	7.2 Counting words
	7.3 Generating a cross-reference table
	7.4 Generating sentences
	7.5 A note on performance
	7.6 Details

	Chapter 8 Writing generic functions
	8.1 What is a generic function?
	8.2 Data-structure independence
	8.3 Input and output iterators
	8.4 Using iterators for flexibility
	8.5 Details

	Chapter 9 Defining new types
	9.1 Student_info revisited
	9.2 Class types
	9.3 Protection
	9.4 The Student_info class
	9.5 Constructors
	9.6 Using the Student_info class
	9.7 Details

	Chapter 10 Managing memory and low-level data structures
	10.1 Pointers and arrays
	10.2 String literals revisited
	10.3 Initializing arrays of character pointers
	10.4 Arguments to main
	10.5 Reading and writing files
	10.6 Three kinds of memory management
	10.7 Details

	Chapter 11 Defining abstract data types
	11.1 The Vec class
	11.2 Implementing the Vec class
	11.3 Copy control
	11.4 Dynamic Vecs
	11.5 Flexible memory management
	11.6 Details

	Chapter 12 Making class objects act like values
	12.1 A simple string class
	12.2 Automatic conversions
	12.3 Str operations
	12.4 Some conversions are hazardous
	12.5 Conversion operators
	12.6 Conversions and memory management
	12.7 Details

	Chapter 13 Using inheritance and dynamic binding
	13.1 Inheritance
	13.2 Polymorphism and virtual functions
	13.3 Using inheritance to solve our problem
	13.4 A simple handle class
	13.5 Using the handle class
	13.6 Subtleties
	13.7 Details

	Chapter 14 Managing memory (almost) automatically
	14.1 Handles that copy their objects
	14.2 Reference-counted handles
	14.3 Handles that let you decide when to share data
	14.4 An improvement on controllable handles
	14.5 Details

	Chapter 15 Revisiting character pictures
	15.1 Design
	15.2 Implementation
	15.3 Details

	Chapter 16 Where do we go from here?
	16.1 Use the abstractions you have
	16.2 Learn more

	Appendix A Language details
	A.1 Declarations
	A.2 Types
	A.3 Expressions
	A.4 Statements

	Appendix B Library summary
	B.1 Input-output
	B.2 Containers and iterators
	B.3 Algorithms

