A No-Frills Introduction to Lua 5.1 VM Instructions

by Kein-Hong Man, esq. <khman AT users.sf.net>

Version 0.1, 20060313

Contents
1 Introduction 2
2 Lua Instruction Basics 3
3 Really Simple Chunks 5
4 Lua Binary Chunks 7
5 Instruction Notation 15
6 Loading Constants 16
7 Upvalues and Globals 20
8 Table Instructions 22
9 Arithmetic and String Instructions 23
10 Jumps and Calls 28
11 Relational and Logic Instructions 35
12 Loop Instructions 42
13 Table Creation 48
14 Closures and Closing 52
15 Comparing Lua5.0.2 and Lua 5.1 56
16 Digging Deeper 57
17 Acknowledgements 57
18 ChangelLog & ToDos 57

“A No-Frills Introduction to Lua 5.1 VM Instructionsis licensed under the Creative
Commons Attribution-NonCommercial-ShareAlike Licen2€. You are free to copy,

distribute and display the work, and make derivative wask$ong as you give the original
author credit, you do not use this work for commerpiaiposes, and if you alter, transform,
or build upon this work, you distribute the resulting kvonly under a license identical to this
one. See the following URLs for more information:

http://creativecommons.org/licenses/by-nc-sa/2. o/
http://creativecommons.org/licenses/by-nc-sa/2. O/legalcode

1 Introduction

This is a no-frills introduction to the instruction setlod Lua 5.1 virtual machine. Compared
to Perl or Python, the compactness of Lua makeslatively easier for someone to peek
under the hood and understand its internals. | think om& cannot completely grok a
scripting language, or any complex system for that mattighout slitting the animal open

and examining the entrails, organs and other yucky shaff isn't normally seen. So this
document is supposed to help with the “peek under the hobd” bi

This introductory guide covers Lua 5.1 only. Please see tlee dbcument for the guide to
Lua 5.0.2 virtual machine instructions. This is intentiptfze internals of Lua is not fixed or
standardized in any way, so usemsst not expect compatibility from one version of Lua to
another as far as internals are concerned.

Output from ChunkSpy (URLhttp:/luaforge.net/projects/chunkspy/), aluab
binary chunk disassembler which | wrote while studying inti@rnals, was used to generate
the examples shown in this document. The brief disably mode of ChunkSpy is very
similar to the output of the listing mode lakc , so you do not need to learn a new listing
syntax. ChunkSpy can be downloaded from LuaForge (WiRhZ/luaforge.net/); it

is licensed under the same type of MIT-style licenseuass itself.

ChunkSpy has an interactive mode: you can enter a sourc& emdnget an immediate
disassembly. This allows you to use this document a®adl by entering the examples into
ChunkSpy and seeing the results yourself. The interactive madeo very useful when you
are exploring the behaviour of the Lua code generator oi sf@rt code snippets.

This is a quick introduction, so it isn’'t intended todbeomprehensive or expert treatment of
the Lua virtual machine (from this point on, “Lua” reféos‘Lua 5” unless otherwise stated)

or its instructions. It is intended to be a simplesye®-digest beginner’s guide to the Lua
virtual machine instruction set — it won't do cartwheelblow smoke rings.

The objective of this introduction is to cover all thea virtual machine instructions and the
structure of Lua 5 binary chunks with a minimum of fuss. Tlfeyou want more detail, you
can usduac or ChunkSpy to study non-trivial chunks of code, or you can idieethe Lua
source code itself for the real thing.

Thisis currently a draft, and | am not a Lua internals expert. So feedback is welcome. If you
find any errors, or if you have anything to contribute please send me an e-mail (to khman AT
users.sf.nedr mkh AT pl.jaring.my so that | can correct it. Thanks.

2 Lua Instruction Basics

The Lua virtual machine instruction set we will look @i particulaimplementation of the
Lua language. It is by no means the only way to skandticken. The instruction set just
happens to be the way the authors of Lua chose to implemesion 5 of Lua. The following
sections are based on the instruction set used in Qud Be instruction set might change in
the future — do not expect it to be set in stone. Ehizecause the implementation details of
virtual machines are not a concern to most users aptiegy languages. For most
applications, there is no need to specify how bytecodensrged or how the virtual machine
runs, as long as the language works as advertised. Samimn that there is no official
specification of the Lua virtual machine instruction $bkére is no need for one; the only
official specification is of the Lua language.

In the course of studying disassemblies of Lua binary k&uyou will notice that many
generated instruction sequences aren't as perfect asvgald like them to be. This is
perfectly normal from an engineering standpoint. Theoomal Lua implementation is not
meant to be an optimizing bytecode compiler or a Jipiler. Instead it is supposed to load,
parse and run Lua source code efficiently. It is the tgtafithe implementation that counts.
If you really need the performance, you are supposedoi diown into native C functions

anyway.

Lua instructions have a fixed size, using a 32 bit uesignteger data type by default. In
binary chunks, endianness is significant, but while in mgpan instruction can be portably
decoded or encoded in C using the usual integer shift and masskiops. The details can be
found inlopcodes.h , while thelnstruction type definition is defined iflimits.h

There are three instruction types and 38 opcodes (numberezLiQhl87) are currently in use
as of Lua 5.1. The instruction types are enumerated BE,iAABX, iIAsBx, and may be
visually represented as follows:

31 24 23 16 15 8 7 0
\ \ \
iABC B:9 C:9 A:8 Opcode:6
iABX Bx:18 A:8 Opcode:6
iAsBx sBx:18 A:8 Opcode:6
\ \ \

Lua 5 Instruction Formats

Instruction fields are encoded as simple unsigned integlees, except for sBx. Field sBx
can represent negative numbers, but it doesn’t use 2s coemlemstead, it has a bias equal
to half the maximum integer that can be representeitsbynsigned counterpart, Bx. For a
field size of 18 bits, Bx can hold a maximum unsignedgetesalue of 262143, and so the
bias is 131071 (calculated 262143 >> 1). A value of -1 will be encoded as (-1 + 131071)
or 131070 or 1FFFE in hexadecimal.

Fields A, B and C usually refers to register numbersu$é the term “register” because of its
similarity to processor registers). Although field A tise target operand in arithmetic
operations, this rule isn’t always true for other indiors. A register is really an index into
the current stack frame, register 0 being the bottostaufk position.

-3-

Unlike the Lua C API, negative indices (counting from tbp of stack) are not supported.
For some instructions, where the top of stack may Qained, it is encoded as a special
operand value, usually 0. Local variables are equivalemettain registers in the current
stack frame, while dedicated opcodes allow read/writglabals and upvalues. For some
instructions, a value in fields B or C may be a registearoencoding of the number of a
constant in the constant pool. This will be describ@dhér in the section on instruction
notation.

By default, Lua has a maximum stack frame size of 25& iShencoded aBIAXSTACKIn
llimits.h . The maximum stack frame size in turn limits the mmaxn number of locals
per function, which is set at 200, encoded.dal_MAXVARS in luaconf.h . Other limits
found in the same file include the maximum number of wgsbper function (60), encoded
asLUAI_ MAXUPVALUEScall depths, the minimum C stack size, etc. Alsoh ait sBx field
of 18 bits, jumps and control structures cannot excgechp distance of about 131071.

A summary of the Lua 5.1 virtual machine instruction sesifbows:

Opcode Name Description
0 MOVE Copy a value between registers
1 LOADK Load a constant into a register
2 LOADBOOL Load a boolean into a register
3 LOADNIL Load nil values into a range of registers
4 GETUPVAL Read an upvalue into a register
5 GETGLOBAL Read a global variable into a register
6 GETTABLE Read a table element into a register
7 SETGLOBAL Write a register value into a global variable
8 SETUPVAL Write a register value into an upvalue
9 SETTABLE Write a register value into a table element
10 NEWTABLE Create a new table
11 SELF Prepare an object method for calling
12 ADD Addition operator
13 SUB Subtraction operator
14 MUL Multiplication operator
15 DIV Division operator
16 MOD Modulus (remainder) operator
17 POW Exponentiation operator
18 UNM Unary minus operator
19 NOT Logical NOT operator
20 LEN Length operator
21 CONCAT Concatenate a range of registers
22 JMP Unconditional jump
23 EQ Equality test
24 LT Less than test
25 LE Less than or equal to test
26 TEST Boolean test, with conditional jump
27 TESTSET Boolean test, with conditional jump and assignment
28 CALL Call a closure
29 TAILCALL Perform a tail call
30 RETURN Return from function call
31 FORLOOP Iterate a numeric for loop
32 FORPREP Initialization for a numeric for loop
33 TFORLOOP Iterate a generic for loop
34 SETLIST Set a range of array elements for a table
35 CLOSE Close a range of locals being used as upvalues
36 CLOSURE Create a closure of a function prototype
37 VARARG Assign vararg function arguments to registers

-4-

3 Really Simple Chunks

Before heading into binary chunk and virtual machine instrmatletails, this section will
demonstrate briefly how ChunkSpy can be used to exploaeSLoode generation. All the
examples in this document were produced using the Lua Bsibrveof ChunkSpy found in
the ChunkSpy 0.9.8 distribution.

First, start ChunkSpy in interactive mode (user input isnset|d):

$ lua ChunkSpy.lua --interact
ChunkSpy: A Lua 5.1 binary chunk disassembler

Version 0.9.8 (20060307) Copyright (c) 2004-2006 K ein-Hong Man
The COPYRIGHT file describes the conditions under w hich this
software may be distributed (basically a Lua 5-styl e license.)

Type 'exit' or 'quit' to end the interactive sessio n. 'help’ displays
this message. ChunkSpy will attempt to turn anythin g elseinto a
binary chunk and process it into an assembly-style listing.

A \' can be used as a line continuation symbol; th is allows multiple

lines to be strung together.

>

We'll start with the shortest possible binary chunk tizat be generated:

>do end
; source chunk: (interactive mode)
; X86 standard (32-bit, little endian, doubles)

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0022

[L]return 0 1

; end of function

ChunkSpy will treat your keyboard input as a small chunk ofdawace code. The library
functionstring.dump() is first used to generate a binary chunk string, thamK®&py will
disassemble that string and give you a brief assemmbfubge-style output listing.

Some features of the listing: Comment lines are prefbyed semicolon. The header portion
of the binary chunk is not displayed with the briefestydata or header information that isn’t
an instruction is shown as an assembler directive witbt gorefix.luac -style comments are
generated for some instructions, and the instructioritot#s in square brackets.

A “do end ” generates a single RETURN instruction and does notéieg. There are no
parameters, locals, upvalues or globals. For theofdsie disassembly listings shown in this
document, we will omit some common header comments slow only the function
disassembly part. Instructions will be referenced $ynarked position, e.g. line [1]. Here is
another very short chunk:

>return

; function [O] definition (level 1)

; O upvalues, 0 params, 2 stacks
function 0022

[L]return 0 1

[2]return 0 1

; end of function

A RETURN instruction is generated for evesturn in the source. The first RETURN (line
[1]) is generated by theeturn keyword, while the second RETURN (line [2]) is always
added by the code generator. This isn’t a problem,usecthe second RETURN never gets
executed anyway, and only 4 bytes is wasted. Perfewrggon of RETURN instructions
requires basic block analysis, and it is not done becthese is no performance penalty for
an extra RETURN during execution, only a negligible mgnpanalty.

Notice in these examples, the minimum stack siZ& sven when the stack isn’'t used. The
next snippet assigns a constant value of 6 to the globablesa:

>a=6

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0022

.const "a" ;0

.const 6 ;1

[1]loadk 0 1 ;6

[2] setglobal O O ;a
[B]return 0 1

; end of function

All string and number constants are pooled on a petifum basis, and instructions refer to
them using an index value which starts from 0. Globahk#e names need a constant string
as well, because globals are maintained as a table[1]it@ads the value 6 (with an index to

the constant pool of 1) into register 0O, then line [2$ $ke global table with the constant “a”

(constant index 0) as the key and register O (holdiaghumber 6) as the value.

If we write the variable as a local, we get:

>| ocal a="hell 0"

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0022

docal "a" ;0
.const "hello" ;0
[1]loadk 0 O ; "hello"

[2]return 0 1
: end of function

Local variables reside in the stack, and they occupyaek Sor register) location for the
duration of their existence. The scope of a local é&idgs specified by a starting program
counter location and an ending program counter logatibis is not shown in a brief
disassembly listing.

The local table in the function tells the user thatstegiO is variablea. This information
doesn't matter to the VM, because it needs to know ergistimbers only — register
allocation was supposed to have been properly done byotlee generator. So LOADK in
line [1] loads constant O (the string “hello”) into isgr O, which is the local variabke A
stripped binary chunk will not have local variable nafeslebugging.

Some examples in the following sections have been durtmnotated with additional
comments in parentheses. Please note that ChunkSpgowviienerate such comments, nor
will it indent functions that are at different nestilgyels. Next we will take a look at the
structure of Lua 5.1 binary chunks.

4 Lua Binary Chunks

Lua can dump functions as binary chunks, which can therriiemto a file, loaded and run.
Binary chunks behave exactly like the source code frorawtiiey were compiled.

A binary chunk consist of two parts: a header block artdp-level function. The header
portion contains 12 elements:

Header block of a Lua 5 binary chunk
Default values shown are for a 32-bit little-endian platform with IEEE 754
doubles as the number format. The header size is always 12 bytes.

4 bytes Header signature: ESC, “Lua” or 0x1B4C7561
* Binary chunk is recognized by checking for this signature

1 byte Version number, 0x51 (81 decimal) for Lua 5.1
 High hex digit is major version number
» Low hex digit is minor version number

1 byte Format version, O=official version
1 byte Endianness flag (default 1)
» 0=big endian, 1=little endian
1 byte Size of int (in bytes) (default 4)
1 byte Size of size_t (in bytes) (default 4)
1 byte Size of Instruction (in bytes) (default 4)
1 byte Size of lua_Number (in bytes) (default 8)
1 byte Integral flag (default 0)

* O=floating-point, 1=integral number type

On an x86 platform, the default header bytes will be (in hex):
1B4C7561 51000104 04040800

A Lua 5.1 binary chunk header is always 12 bytes in Sa&e the characteristics of a Lua
virtual machine is hard-coded, the Lua undump code checks af t® header bytes to
determine whether the binary chunk is fit for consumptomot. All 12 header bytes of the
binary chunk must exactly match the header bytes opliéorm, otherwise Lua 5.1 will
refuse to load the chunk. The header is also not affdsstendianness; the same code can be
used to load the main header of little-endian or big-endinary chunks. The data type of
lua_Number is determined by the size lo&_Number byte and the integral flag together.

In theory, a Lua binary chunk is portable; in real lifesrénis no need for the undump code to
support such a feature. If you need undump to load allskafdbinary chunks, you are
probably doing something wrong. If however you somehoedndis feature, you can try
ChunkSpy’s rewrite option, which allows you to convertirsaty chunk from one profile to
another.

Anyway, most of the time there is little need to®asly scrutinize the header, because since
Lua source code is usually available, a chunk can be readhipiled into the native binary
chunk format.

The header block is followed immediately by the top-leuattion or chunk:

Function block of a Lua 5 binary chunk
Holds all the relevant data for a function. There is one top-level function.

String source name

Integer line defined

Integer last line defined

1 byte number of upvalues

1 byte number of parameters

1 byte is_vararg flag (see explanation further below)

* 1=VARARG_HASARG
* 2=VARARG_ISVARARG
* 4=VARARG_NEEDSARG

1 byte maximum stack size (number of registers used)
List list of instructions (code)

List list of constants

List list of function prototypes

List source line positions (optional debug data)

List list of locals (optional debug data)

List list of upvalues (optional debug data)

A function block in a binary chunk defines the prototypedfinction. To actually execute
the function, Lua creates an instancedosure) of the function first. A function in a binary
chunk consist of a few header elements and a bun@tfDebug data can be stripped.

A Stringis defined in this way:

All strings are defined in the following format:

Size t String data size
Bytes String data, includes a NUL (ASCII 0) at the end

The string data size takes into consideration a NUL character at the end,
so an empty string (*”) has 1 as the size_t value. A size_t of 0 means zero
string data bytes; the string does not exist. This is often used by the source
name field of a function.

The source name is usually the name of the source file from which theatyi chunk is
compiled. It may also refer to a string. This source narspecified only in the top-level
function; in other functions, this field consists oafyaSize t with the value 0.

The line defined andlast line defined are the line numbers where the function prototype
starts and ends in the source file. For the main chekyalues of both fields are 0. The next
two fields, thenumber of upvalues and thenumber of parameters, are self-explanatory, as
is themaximum stack sze field. Theis vararg field is a bit more complicated, though.
These are all byte-sized fields.

The is vararg flag comprise 3 bitfields. By default, Lua 5.1 definee tbonstant
LUA COMPAT_VARARG, allowing the tablerg to be used in functions that are defined
with a variable number of parametevar@rg functions.) The tablerg itself is not counted in
the number of parameters. For old style code thatarggss vararg is 7. If the code within
the vararg function uses instead ofarg, thenis vararg is 3 (the VARARG_NEEDSARG
field is 0.) If 5.0.2 compatibility is compiled out, themvararg is 2.

To summarize, the flag VARARG _ISVARARG (2) is alwayst $or vararg functions. If
LUA COMPAT_VARARG is defined, VARARG_HASARG (1) is alset. If... is not used

within the function, then VARARG_NEEDSARG (4) is set. &rmal function always has an
is vararg flag value of 0, while the main chunk always hassavararg flag value of 2.

After the function header elements comes a number sftligt store the information that
makes up the body of the function. Each list starth \&it Integer as a list size count,

followed by a number of list elements. Each liss ita own element format. A list size of O
has no list elements at all.

In the following boxes, a data type in square brackets,[leteger] means that there are
multiple numbers of the element, in this case an inteljsr count is given by the list size.
Names in parentheses are the ones given in the luueesy they are data structure fields.

The first list is the instruction list, or the actumide to the function. This is the list of
instructions that will actually be executed:

Instruction list
Holds list of instructions that will be executed.

Integer size of code (sizecode)
[Instruction] virtual machine instructions

The format of the virtual machine instructions was giwrerihe last chapter. A RETURN
instruction is always generated by the code generattihessize of the instruction list should
be at least 1. Next is the list of constants:

Constant list
Holds list of constants referenced in the function (it's a constant pool.)

Integer size of constant list (sizek)
[
1 byte type of constant (value in parentheses):
* 0=LUA_TNIL, 1=LUA_TBOOLEAN,
* 3=LUA_TNUMBER, 4=LUA_TSTRING
Const the constant itself: this field does not exist if the constant
type is O; itis O or 1 for type 1; itis a Number for type 3,
or a String for type 4.

Number is the Lua number data type, normally an IEEE 754 64dibkk. Integer, Size t
and Number are all endian-sensitive; Lua 5.1 will not load a churilose endianness is
different from that of the platform. Their sizes aimdmats are of course specified in the
binary chunk header. The data typeNafimber is determined by its size byte and the integral
flag. Boolean values are encoded as either O or 1.

The function prototype list comes after the constant list

Function prototype list
Holds function prototypes defined within the function.

Integer size of function prototypes (sizep)
[Functions] function prototype data, or function blocks

Function prototypes or function blocks have the exacesfmmmat as the top-level function
or chunk. However, function prototypes that isn't the top-lduektion do not have the
source name field defined. In this way, function prototypesfferent lexical scoping levels
are defined and nested. In a complex binary chunk, tfttngemay be several levels deep. A
closure will refer to a function by its number in the. lis

The lists following the list of prototypes are optionéhey contain debug information and
can be stripped to save space. First comes the sourgm8it®n list:

Source line position list

Holds the source line number for each corresponding instruction in a
function. This information is used by error handlers or debuggers. In a
stripped binary, the size of this list is zero. The execution of a function does
not depend on this list.

Integer size of source line position list (sizelineinfo)

[Integer] list index corresponds to instruction position; the integer
value is the line number of the Lua source where the
instruction was generated

Next up is the local list. Each local variable entry 8dields, a string and two integers:

Local list
Holds list of local variable names and the program counter range in which
the local variable is active.

Integer size of local list (sizelocvars)

[
String name of local variable (varname)
Integer start of local variable scope (startpc)
Integer end of local variable scope (endpc)

]

-10-

The final list is the upvalue list:

Upvalue list
Holds list of upvalue names.

Integer size of upvalue list (sizeupvalues)
[String] name of upvalue

All the lists are not shared or re-used: Locals, upvalo@sstants and prototypes referenced
in the code must be specified in the respective listearsame function. In addition, locals,
upvalues, constants and the function prototypes are indekegdrusnbers starting from 0. In
disassembly listings, both the source line positiondisdl the instruction list are indexed
starting from 1. Note that the latter is by convemtamly; the indices does not matter to the
virtual machine itself, since all jump-related instructiamse only signed displacements.
However, for debug information, the scope of local \deis is encoded using absolute
program counter positions, and these positions are basgdtarting index of 1. This is also
consistent with the output listing frolumac .

How does it all fit in? You can easily generate aatiesdl binary chunk disassembly using
ChunkSpy. Enter the following short bit of code and namdiltheimple.lua

local a = 8
function b(c) d = a + c end

Next, run ChunkSpy from the command line to generatédiney:
$ lua ChunkSpy.lua --source sinmple.lua > sinple.lst

The following is a description of the generated lis{isichple.Ist), split into segments.

Pos Hex Data Description or Code
0000 ** source chunk: simple.lu a
** global header start **
0000 1B4C7561 header signature: "\27Lua"
0004 51 version (major:minor hex d igits)
0005 00 format (O=official)
0006 01 endianness (1=little endia n)
0007 04 size of int (bytes)
0008 04 size of size_t (bytes)
0009 04 size of Instruction (bytes)
000A 08 size of number (bytes)
000B 00 integral (1=integral)
* number type: double
* x86 standard (32-bit, i ttle endian, doubles)

** global header end **

This is an example of a binary chunk header. ChunkSdy tas the global header to
differentiate it from a function header. For binahuoks specific to a certain platform, it is
easy to match the entire header at one go insteagsting each field. As described
previously, the header is 12 bytes in size, and need® texactly compatible with the
platform or else Lua 5.1 won't load the binary chunk.

-11-

The global header is followed by the function heade¢hetop-level function:

00oC ** function [O] definition (level 1)
** start of function **
000C 0B000000 string size (11)
0010 73696D706C652E6C+ "simple.l"
0018 756100 "ua\0"
source name: simple.lua
001B 00000000 line defined (0)
001F 00000000 last line defined (0)
0023 00 nups (0)
0024 00 numparams (0)
0025 02 is_vararg (2)
0026 02 maxstacksize (2)

A function’s header is always variable in size, due ®stlurce name string. The source
name is only present in the top-level function. A togeleshunk does not have a line number
on which it is defined, so both the line defineddselare 0. There are no upvalues or
parameters. A top-level chunk can always take a varialnber of parameters, vararg is
always 2 for the top-level chunk. The stack size tsasghe minimum of 2 for this very
simple chunk.

Next we come to the various lists, starting with theeclisting of the main chunk:

* code:
0027 05000000 sizecode (5)
002B 01000000 [1]loadk 0 O ; 8
002F 64000000 [2] closure 1 O ; 1 upvalues
0033 00000000 [3] move 00
0037 47400000 [4] setglobal 1 1 ;b
003B 1E008000 [5]return 0 1

The first line of the source code compiles to a simgg&ruction, line [1]. Locah is register O
and the number 8 is constant 0. In line [2], an instafidenction prototype O is created, and
the closure is temporarily placed in register 1. The MONEruction in line [3] is actually
used by the CLOSURE instruction to manage the upvalueis not really executed. This
will be explained in detail in Chapter 14. The closurthen placed into the globalin line
[4]; “b” is constant 1 while the closure is in registl. Line [5] returns control to the calling
function. In this case, it exits the chunk.

The list of constants follow the instructions:

* constants:
003F 02000000 sizek (2)
0043 03 const type 3
0044 0000000000002040 const [O]: (8)
004C 04 const type 4
004D 02000000 string size (2)
0051 6200 "b\0"

const [1]: "b"

The top-level function requires two constants, the nurBh@vhich is used in the assignment
on line 1) and the string “b” (which is used to refertte global variabld on line 2.)

This is followed by the function prototype list of thein chunk. On line 2 of the source, a
function prototype was declared within the main chunk. Tumstion is instantiated and the
closure is assigned to global

-12-

The function prototype list holds all the relevant infotioa a function block within a
function block. ChunkSpy reports it as function prototype nurbet level 2. Level 1 is the
top-level function; there is only one level 1 function, h&ré may be more than one function
prototype at other levels.

* functions:
0053 01000000 sizep (1)
0057 ** function [O] definition (level 2)
** start of function **
0057 00000000 string size (0)
source name: (none)
005B 02000000 line defined (2)
005F 02000000 last line defined (2)
0063 01 nups (1)
0064 01 numparams (1)
0065 00 is_vararg (0)
0066 02 maxstacksize (2)
* code:
0067 04000000 sizecode (4)
006B 44000000 [1] getupval 1 O ;a
006F 4C008000 [2] add 110
0073 47000000 [3] setglobal 1 0 ; d
0077 1E008000 [4]return O 1

Above is the first section of functidsis prototype. It has no name string; it is defined on line
2 (both values point to line 2); there is one upvalue;etlerone parametec; it is not a
vararg function; and its maximum stack size is 2aRaters are located from the bottom of
the stack, so the single paramet@f the function is at register 0.

The prototype has 4 instructions. Most Lua virtual machinguagons are easy to decipher,
but some of them have details that are not immediateigient. This example however
should be quite easy to understand. In line [1], O is thelug@sand 1 is the target register,
which is a temporary register. Line [2] is the additaperation, with register 1 holding the
temporary result while register 0 is the function paramet In line [3], the globald (so
named by constant 0) is set, and in the next line, dastreturned to the caller.

* constants:
007B 01000000 sizek (1)

007F 04 const type 4
0080 02000000 string size (2)
0084 6400 'd\0"

const [0]: "d"

* functions:

0086 00000000 sizep (0)

The constant list for the function has one entry,stnimg “d” is used to look up the global
variable of that name. This is followed by the souire position list:

* lines:

008A 04000000

sizelineinfo (4)

[pc] (line)

008E 02000000
0092 02000000
0096 02000000
009A 02000000

[1] (2)
[2] (2)
[3] (2)
[41 (2)

All four instructions that were generated came from lirod the source code.

-13-

The last two lists of the function prototype are theal list and the upvalue list:

* locals:
009E 01000000 sizelocvars (1)
00A2 02000000 string size (2)
00A6 6300 "c\0"
local [0]: ¢
00A8 00000000 startpc (0)
00AC 03000000 endpc (3)
* upvalues:
00BO 01000000 sizeupvalues (1)
00B4 02000000 string size (2)
00B8 6100 "a\0"

upvalue [0]: a
** end of function **

There is one local variable, which is parameteFor parameters, th&artpc value is 0.
Normal locals that are defined within a function hawtastpc value of 1. There is also an
upvalue,a, which refers to the loca in the parent (top) function.

After the end of the function prototype data for functiprthe chunk resumes with the debug
information for the top-level chunk:

* lines:
00BA 05000000 sizelineinfo (5)
[pc] (line)
00BE 01000000 [11 (1)
00C2 02000000 2] (2)
00C6 02000000 [31(2)
00CA 02000000 [4] (2)
00CE 02000000 [5] (2)
* locals:
00D2 01000000 sizelocvars (1)
00D6 02000000 string size (2)
00DA 6100 "a\0"
local [0]: a
00DC 01000000 startpc (1)
0OEO 04000000 endpc (4)
* upvalues:
00E4 00000000 sizeupvalues (0)

** end of function **

OOE8 ** end of chunk **

From the source line list, we can see that ther®& arstructions in the top-level function. The
first instruction came from line 1 of the source, whiie other 4 instructions came from line
2 of the source.

The top-level function has one local variable, na@Y active from program counter
location 1 to location 4, and it refers to registeifBere are no upvalues, so the size of that
table is 0. The binary chunk ends after the debug informafitire main chunk is listed.

Now that we’ve seen a binary chunk in detail, we wilgaed to look at each Lua 5.1 virtual
machine instruction.

-14-

5 Instruction Notation

Before looking at some Lua virtual machine instructionse e little something about the
notation used for describing instructions. Instruction deisons are given as comments in
the Lua source filelopcodes.h . The instruction descriptions are reproduced in the
following chapters, with additional explanatory notesrédare some basic symbols:

R(A) Register A (specified in instruction field A)
R(B) Register B (specified in instruction field B)
R(C) Register C (specified in instruction field C)
PC Program Counter

Kst(n) Element n in the constant list

Upvalue[n] Name of upvalue with index n
Gbl[sym] Global variable indexed by symbol sym

RK(B) Register B or a constant index
RK(C) Register C or a constant index
sBx Signed displacement (in field sBx) for all kinds of jumps

The notation used to describe instructions is a litkle pseudo-C. The operators used in the
notation are largely C operators, while conditional estents use C-style evaluation.
Booleans are evaluated C-style. Thus, the notatianla®se translation of the actual C code
that implements an instruction.

The operation of some instructions cannot be clearkcriteed by one or two lines of
notation. Hence, this guide will supplement symbolitation with detailed descriptions of
the operation of each instruction. Having described aruictghn, examples will be given to
show the instruction working in a short snippet of loagle. Using ChunkSpy’s interactive
mode, you can try out the examples yourself and gstamt feedback in the form of
disassembled code. If you want a disassembled listing thie byte values of data and
instructions, you can use ChunkSpy to generate a nhormal, vedigsssembly listing.

The program counter of the virtual machine (PC) alwaystpdo the next instruction. This
behaviour is standard for most microprocessors. Thasdlat once an instruction is read in
to be executed, the program counter is immediately updatedo Skip a single instruction
following the current instruction, add 1 (the displaeeth to the PC. A displacement of -1
will theoretically cause a JMP instruction to jump backo itself, causing an infinite loop.
Luckily, the code generator is not supposed to be able to upakeuff like that.

As previously explained, registers and local variablesravghly equivalent. Temporary
results are always held in registers. Instructiod$eB and C can point to a constant instead
of a register for some instructions, this is when takl fvalue has its MSB (most significant
bit) set. For example, a field B value of 256 will pomthe constant at index O, if the field is
9 bits wide. For most instructions, field A is the tanggister. Disassembly listings preserve
the A, B, C operand field order for consistency.

-15-

6 Loading Constants

Loads and moves are the starting point of pretty muklpracessor or virtual machine
instruction sets, so we’ll start with primitive loads anoves:

MOVE A B R(A) :=R(B)

Copies the value of register R(B) into register R(A). If R(B) holds a table,
function or userdata, then the reference to that object is copied. MOVE is
often used for moving values into place for the next operation.

The opcode for MOVE has a second purpose — it is also used in creating
closures, always appearing after the CLOSURE instruction; see CLOSURE
for more information.

The most straightforward use of MOVE is for assigningcall to another local:

>l ocal a,b =10; b = a

; function [O] definition (level 1)

; O upvalues, 0 params, 2 stacks
function 0022

docal "a" ;0

Jdocal "b" ;1

.const 10 ;0

[1]loadk 0 O ; 10
[2] loadnil 1 1

[3] move 10
[4return 0 1
; end of function

Line [3] assignsdopies) the value in locah (register 0) to locdb (register 1).

You won't see MOVE instructions used in arithmetic expi@s because they are not
needed by arithmetic operators. All arithmetic operatorsirar2- or 3-operand style: the

entire local stack frame is already visible to operd®@y, R(B) and R(C) so there is no need
for any extra MOVE instructions.

Other places where you will see MOVE are:
When moving parameters into place for a function call.
When moving values into place for certain instructionsreviséack order is important, e.g.
GETTABLE, SETTABLE and CONCAT.
When copying return values into locals after a functidih ca
After CLOSURE instructions (discussed in Chapter 14.)

There are 3 fundamental instructions for loading canstanto local variables. Other
instructions, for reading and writing globals, upvalues ardesaare discussed in the
following chapters. The first constant loading inostion is LOADNIL:

LOADNIL AB R(A) := ... := R(B) := nil

Sets a range of registers from R(A) to R(B) to nil. If a single register is to
be assigned to, then R(A) = R(B). When two or more consecutive locals
need to be assigned nil values, only a single LOADNIL is needed.

-16-

LOADNIL uses the operands A and B to meamage of register locations. The example for
MOVE in the last page shows LOADNIL used to set alsinggister tanil.

>l ocal a,b,c,d,e =nil,nil,0
; function [O] definition (level 1)

; O upvalues, 0 params, 5 stacks
function 0025

Jlocal "a" ;
local "b"
Jocal "c"
Jocal "d"
local "e"
.const O ;
[1] loadk 0 ;0
[2] loadnil 3 4
[B]return 0 1

: end of function

nCrwNRO

Line [2] nils localsd ande. A LOADNIL instruction is not needed for locadsandb because

the instruction has been optimized away. Lacigl explicitly initialized with the value 0. The
LOADNIL for locals a andb can be optimized away as the Lua virtual machine alweais

all locals tonil prior to executing a function. The optimization ruleaisimple one: If no

other instructions have been generated, then a LOADNIItha first instruction can be
optimized away.

In the example, although the LOADNIL on line [2] is redund&nis still generated as there
is already an instruction that is not LOADNIL on lif. Ideally, one should put all locals
that are initialized tail at the top of the function, before anything else. tndhove case, we
can rearrange the locals to take advantage of the optiomzrule:

>l ocal a,b,d,e local c=0
; function [O] definition (level 1)

; 0 upvalues, 0 params, 5 stacks
function 0025

Jlocal "a" ;
ocal "b"
Jocal "d" ;
local "e"
Jocal "c"
.const O ;
[1] loadk
[2] return
: end of functio

or®rwnrO

0
1
n

Now, we save one LOADNIL instruction. In other partadtinction, an explicit assignment
of nil to a local variable will of course require a LOADNIL insttion.

LOADK ABXx R(A) := Kst(Bx)

Loads constant number Bx into register R(A). Constants are usually
numbers or strings. Each function has its own constant list, or pool.

LOADK loads a constant from the constant list iatcegister or local. Constants are indexed
starting from 0. Some instructions, such as arithmastructions, can use the constant list
without needing a LOADK. Constants are pooled in the tluplicates are eliminated. The
list can holdnils, booleans, numbers or strings.

-17-

>l ocal a,b,c,d = 3,"foo", 3, "foo"
; function [O] definition (level 1)

; 0 upvalues, 0 params, 4 stacks

function 0024

Jocal "a" ;
local "b"

Jocal "c"

ocal "d"

.const 3 ;
.const "foo" ;1
[1] loadk
[2] loadk
[3] loadk
[4] loadk
[5] return
: end of functio

CwnRro

0 ;

1 ; "foo"
0 03

1 ; "foo"
1

n

OCWNEFRO

The constant 3 and the constant “foo” are both writtgce in the source snippet, but in the
constant list, each constant has a single locafitwe. constant list contains the names of
global variables as well, since GETGLOBAL and SETGL@BAakes an implied LOADK
operation in order to get the name string of a globaaklke first before looking it up in the
global table.

The final constant-loading instruction is LOADBOOL, feetting a boolean value, and it has
some additional functionality.

LOADBOOL ABC R(A) := (Bool)B:; if (C) PC++

Loads a boolean value (true or false) into register R(A). true is usually
encoded as an integer 1, false is always 0. If C is non-zero, then the next
instruction is skipped (this is used when you have an assignment
statement where the expression uses relational operators, e.g. M = K>5.)

You can use any non-zero value for the boolean true in field B, but since
you cannot use booleans as numbers in Lua, it’s best to stick to 1 for true.

LOADBOOL is used for loading a boolean value into a tegisit's also used where a
boolean result is supposed to be generated, becausenaldést instructions, for example,
do not generate boolean results — they perform conditiomps instead. The operand C is
used to optionally skip the next instruction (by incremenB@gby 1) in order to support such
code. For simple assignments of boolean valuesatvays 0.

>l ocal a,b = true,false
; function [O] definition (level 1)

; O upvalues, 0 params, 2 stacks
function 0022

Jocal "a" ;0

Jocal "b" ;1

[1] loadbool O 1 O ;true

[2] loadbool 1 0 0 ;false
[B]return 0 1

; end of function

This example is straightforward: Line [1] assignge to local a (register 0) while line [2]
assigndalse to localb (register 1). In both cases, field C is 0, so PC isimaemented and
the next instruction is not skipped.

-18-

>l ocal a=5>2

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0022

docal "a" ;0

.const 5 ;0

.const 2 ;1

[1] It 1 257256 ;25,to[3]if false
[2] jmp 1 ; to [4]

[3] loadbool O 0 1 ;false,to[5]
[4] loadbool O 1 O ;true
[G]return 0 1

; end of function

This is an example of an expression that gives a booésult and is assigned to a variable.
Notice that Lua does not optimize the expression attawe value; Lua 5.1 does not perform
compile-time constant evaluation for relational opere, but it can perform simple constant
evaluation for arithmetic operations.

Since the relational operator LT (which will be covkne greater detail later) does not give a
boolean result but performs a conditional jump, LOAREQuses its C operand to perform
an unconditional jump in line [3] — this saves onerindion and makes things a little tidier.
The reason for all this is that the instruction isesimply optimized forif..then blocks.
EssentiallyJocala=5> 2 Is executed in the following way:

local a
if 2 <5 then
a =true
else
a = false
end

In the disassembly listing, when LT tests 2 < Swvaluates tdrue and doesn’t perform a
conditional jump. Line [2] jumps over the false result pathd in line [4], the locah
(register 0) is assigned the booleane by the instruction LOADBOOL. If 2 and 5 were
reversed, line [3] will be followed instead, settindaése, and then the true result path (line
[4]) will be skipped, since LOADBOOL has its field G $e non-zero.

So the true result path goes like this (additional contsn@rparentheses):

[1] It 1 257256 ;25,to[3]if false (if2<5)
[2]jmp 1 ;to[4]
[4] loadbool O 1 O ;true (a =true)

[G]return 0 1

and the false result path (which never executes snetkample) goes like this:
[1] It 1 257256 ;25,to[3]if false (if2<5)

[3] loadbool O 0 1 ;false,to[5] (a = false)
[G]return 0 1

The true result path looks longer, but it isn't, due te thay the virtual machine is
implemented. This will be discussed further in the saabio relational and logic instructions.

-19-

7 Upvalues and Globals

When the Lua virtual machine needs an upvalue or a gltimk are dedicated instructions
to load the value into a register. Similarly, wherupmalue or a global needs to be written to,
dedicated instructions are used.

GETGLOBAL ABx R(A) := GbI[Kst(Bx)]

Copies the value of the global variable whose name is given in constant
number Bx into register R(A). The name constant must be a string.

SETGLOBAL ABx GbI[Kst(BX)] := R(A)

Copies the value from register R(A) into the global variable whose name is
given in constant number Bx. The name constant must be a string.

The GETGLOBAL and SETGLOBAL instructions are very gfhéforward and easy to use.

The instructions require that the global variable nama benstant, indexed by instruction
field Bx. R(A) is either the source or target regisiére names of the global variables used
by a function will be part of the constant list of thaction.

>a = 40; local b = a

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0022

ocal "b" ;0
.const "a" ;0
.const 40 ;1

[1]loadk 0 1 ; 40
[2] setglobal O O ;a
[3] getglobal 0 O ;a
[4return 0 1
; end of function

From the example, you can see that “b” is the namkeolbical variable while “a” is the name
of the global variable. Line [1] loads the number 40 intgister O (functioning as a
temporary register, since lodalhasn’'t been defined.) Line [2] assigns the value in teg®
to the global variable with name “a” (constant 0). By [3], local b is defined and is
assigned the value of globkal

GETUPVAL AB R(A) := UpValue[B]

Copies the value in upvalue number B into register R(A). Each function
may have its own upvalue list. This upvalue list is internal to the virtual
machine; the list of upvalue name strings in a prototype is not mandatory.

The opcode for GETUPVAL has a second purpose — it is also used in
creating closures, always appearing after the CLOSURE instruction; see
CLOSURE for more information.

SETUPVAL AB UpValue[B] := R(A)

Copies the value from register R(A) into the upvalue number B in the
upvalue list for that function.

-20-

GETUPVAL and SETUPVAL uses internally-managed upvalsts.l The list of upvalue
name strings that are found in a function prototype isiéugging purposes; it is not used by
the Lua virtual machine and can be strippeduéy .

During execution, upvalues are set up by a CLOSURE, amctaimed by the Lua virtual
machine. In the following example, functidmis declared inside the main chunk, and is
shown in the disassembly as a function prototype withirfunction prototype. The
indentation, which is not in the original output, hetipwisually separate the two functions.

>l ocal a; function b() a =1 return a end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0022

Jocal "a" ;0

.const "b" ;0

; function [0] definition (level 2)

; 1 upvalues, 0 params, 2 stacks
function 1002
.upvalue "a" ;0
.const 1 ;0
[1]loadk 0 O ;
[2] setupval O O ;a
[3] getupval 0 O ;a
[4]return O 2
[G]return 0 1

; end of function

[1] closure 1 O ; 1 upvalues
[2] move 00

[3] setglobal 1 0 b
[4return 0 1

; end of function

In the main chunk (function O, level 1), lo@aktarts as ail. The CLOSURE in line [1] then
instantiates function prototype O (function 0O, leveW&h a single upvalue. Line [2] is part
of the closure, it links locad in the current scope to upvalaein the closure. Finally the
closure is assigned to global

In functionb, there is a single upvalua, In Pascal, a variable in an outer scope is found by
traversing stack frames. However, instantiationtwd functions are first-class values, and
they may be assigned to a variable and referencedledse. Moreover, a single prototype
may have multiple instantiations. Managing upvalues bacomes a little more tricky than
traversing stack frames in Pascal. The Lua virtualhm&csolution is to provide a clean
interface to access upvalues via GETUPVAL and SETUPWahile the management of
upvalues is handled by the virtual machine itself.

Line [2] in functionb sets upvalua (upvalue number O in the upvalue table) to a number
value of 1 (held in temporary register 0.) In line [3], tladue in upvalue is retrieved and
placed into register 0, where the following RETURNrastion will use it as a return value.
The RETURN in line [5] is unused.

-21-

8 Table Instructions

Accessing table elements is a little more complax thiccessing upvalues and globals:

GETTABLE ABC R(A):=R(B)[RK(C)]

Copies the value from a table element into register R(A). The table is
referenced by register R(B), while the index to the table is given by RK(C),
which may be the value of register R(C) or a constant number.

SETTABLE ABC R(A)RK(B)] := RK(C)

Copies the value from register R(C) or a constant into a table element. The
table is referenced by register R(A), while the index to the table is given by
RK(B), which may be the value of register R(B) or a constant number.

All 3 operand fields are used, and some of the opereadsbe constants. A constant is
specified by setting the MSB of the operand to 1.K{® need to refer to constant 1, the
encoded value will be (256 | 1) or 257, where 256 is the \aflugt 8 of the operand.
Allowing constants to be used directly reduces considerablgehd for temporary registers.

>local p ={}; p[1] = "foo"; return p["bar"]
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0022

Jocal "p" ;0

.const 1 ;0

.const "foo" ;1

.const "bar" ;2

[1] newtable 0 O 0 ;array=0, hash=0
[2] settable 0 256 257 ; 1 "foo"

[3] gettable 1 0 258 ; "bar"

[4]return 1 2

[G]return 0 1

; end of function

In line [1], a new empty table is created and theresiee placed in locgb (register 0).
Creating and populating new tables is a little involvedt svill only be discussed later.

Table index 1 is set to “foo” in line [2] by the SETTABIfStruction. Both the index and the
value for the table element are encoded constant ngmPg6 is constant O (the number 1)
while 257 is constant 1 (the string “foo”.) The R(Alwe of O points to the new table that
was defined in line [1].

In line [3], the value of the table element indexed bysthieg “bar” is copied into temporary
register 1, which is then used by RETURN as a returmevé?58 is constant 2 (the string
“bar”) while 0 in field B is the reference to the @b

RK(B) and RK(C) type operands are also used in vimugthine instructions that implement
binary arithmetic operators and relational operators.

-22-

9 Arithmetic and String Instructions

The Lua virtual machine’s set of arithmetic instructidosks like 3-operand arithmetic
instructions on an RISC processor. 3-operand instructims arithmetic expressions to be
translated into machine instructions pretty efficiently.

ADD ABC R(A):=RK(B) + RK(C)
SUB ABC R(A):=RK(B) — RK(C)
MUL ABC R(A):=RK(B) * RK(C)
DIV ABC R(A):=RK(B)/RK(C)
MOD ABC R(A):=RK(B) % RK(C)
POW ABC R(A):=RK(B)*RK(C)

Binary operators (arithmetic operators with two inputs.) The result of the
operation between RK(B) and RK(C) is placed into R(A). These
instructions are in the classic 3-register style. RK(B) and RK(C) may be
either registers or constants in the constant pool.

ADD is addition. SUB is subtraction. MUL is multiplication. DIV is division.
MOD is modulus (remainder). POW is exponentiation.

The source operands, RK(B) and RK(C), may be corsstéind constant is out of range of
field B or field C, then the constant will be loadetb a temporary register in advance.

>local a,b=2,4, a=a+4*b-al/ 2"b%3
; function [O] definition (level 1)

; 0 upvalues, 0 params, 4 stacks

function 0024

Jocal "a" ;0

Jocal "b" ;1

.const 2 ;0

.const 4 ;1

.const 3 ;2

ll]loadk 0 O ;2

2]loadk 1 1 4

3] mul 2 2571 ;4 (loc2=4*Db)

4] add 2 02 (loc2 = A +loc2)
5] pow 3 2561 ;2 (loc3=2"h)

6] div 303 (loc3=a/loc3)
7] mod 3 3 258 ;3 (loc3=10c3 % 3)
8] sub 02 3 (a=loc2 —loc3)
9lreturn 0 1

: end of function

In the disassembly shown above, parts of the expressgirown as additional comments in
parentheses. Each arithmetic operator translates sitmle instruction. This also means that
while the statementcbunt = count + 1 " is verbose, it translates into a single instruction
if count is a local. Ifcount is a global, then two extra instructions are requicedead and
write to the global (GETGLOBAL and SETGLOBAL), sincatlametic operations can only
be done on registers (locals) only.

As of Lua 5.1, the parser and code generator can perfonitedi constant expression folding
or evaluation. Constant folding only works for binarytrametic operators and the unary
minus operator (UNM, which will be covered next.) Theraasequivalent optimization for
relational, boolean or string operators.

-23-

The optimization rule is simple: If both terms of a exfression are numbers, the
subexpression will be evaluated at compile time. H@amethere are exceptions. One, the
code generator will not attempt to divide a number bgrODiV and MOD, and two, if the
result is evaluated as a NaN (Not a Number) then thiggtion will not be performed.

Also, constant folding is not done if one term is in fbem of a string that need to be
coerced. In addition, expression terms are not reamdange not all optimization

opportunities can be recognized by the code generator.i§ higentional; the Lua code
generator is not meant to perform heavy duty optimizatiasd.ua is a lightweight language.
Here are a few examples to illustrate how it workklf@onal comments in parentheses):

>ocal a=4+7+b; a=b+4*7, a=b+4+7
; function [O] definition (level 1)

; O upvalues, 0 params, 2 stacks

function 0022

docal "a" ;0

.const "b" ;0

.const 11 ;1

.const 28 ;2

.const 4 ;3

.const 7 ;4

1] getglobal 0 0O ;b

2] add 0 2570 ;11 (a=11+Dh)
3] getglobal 1 0 ;b

4] add 0 1 258 ;28 (a=b+28)
5] getglobal 1 0 ;b

6] add 1 1 259 ;4 (locl=b+4)
7] add 0 1 260 ;7 (a=locl+7)
8lreturn 0 1

: end of function

For the first assignment statemefit/ is evaluated, thus 11 is addedot line [2]. Next, in
line [3] and [4],b and 28 are added together and assignedbtecause multiplication has a
higher precedence add7 is evaluated first. Finally, on lines [5] to [7], thene two addition
operations. Since addition is left-associative, codgeiserated fob+4 first, and only after
that, 7 is added. So in the third example, Lua performsptionization. This can be fixed
using parentheses to explicitly change the precedencsutiexpression:

>local a=b + (4 +7)

; function [O] definition (level 1)

; O upvalues, 0 params, 2 stacks
function 0022

docal "a" ;0
.const "b" ;0
.const 11 ;1

[1] getglobal O O ;b
[2] add 0 0 257 ;11
[B]return 0 1

; end of function

Now, the4+7 subexpression can be evaluated at compile time. Htdtement is written as:
locala=7+(4+7)

the code generator will generate a single LOADK instoa¢ Lua first evaluated+7, then 7
is added, giving a total of 18. The arithmetic expressocompletely evaluated in this case,
thus no arithmetic instructions are generated.

-24-

In order to make full use of constant folding in Lua %l user just need to remember the
usual order of evaluation of an expression’s elementapply parentheses where necessary.
The following are two expressions which will not balerated at compile time:

>ocal a=11/ 0; local b=1+ "1"
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0022

docal "a" ;0

Jdocal "b" ;1

.const 1 ;0

.const 0 ;1

.const "1" ;2

[1] div 0 256257 ;10

[2] add 1 256258 ;1"1"
[B]return 0 1

: end of function

The first is due to a divide-by-0, while the second is tdug string constant that needs to be
coerced into a number. In both cases, constant foldimgptigerformed, so the arithmetic
instructions needed to perform the operations at run timgererated instead.

Next are instructions for performing unary minus argidal NOT:

UNM AB R(A) := -R(B)

Unary minus (arithmetic operator with one input.) R(B) is negated and the
value placed in R(A). R(A) and R(B) are always registers.

NOT AB R(A) := not R(B)

Applies a boolean NOT to the value in R(B) and places the result in R(A).
R(A) and R(B) are always registers.

Here is an example of both unary operations:

>l ocal p,q = 10,false; q,p = -p,not ¢
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks

function 0023

Jocal "p" ;0

Jocal "g" ;1

.const 10 ;0

[1]loadk 0 O ; 10

[2] loadbool 1 0 0 ;false

[3] unm 20
[4] not 01
[5] move 12
[6] return O 1
; end of function

Both UNM and NOT do not accept a constant as a soureeuagh, making the LOADK on
line [1] and the LOADBOOL on line [2] necessary. Whemumary minus is applied to a
constant number, the unary minus is optimized away. &iyilwhen anot is applied tdrue
or false, the logical operation is optimized away.

-25-

In addition to this, constant folding is performed dmary minus, if the term is a number. So,
the expression in the following is completely evaldaaecompile time:

>local a=- (71 4)

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0022

docal "a" ;0
.const -1.75 ;0
[1]loadk 0 O ; -1.75

[2]return 0 1
: end of function

Constant folding is performed & first. Then, since the unary minus operator is apyted
the constant 1.75, constant folding can be performed ,ag@ihthe code generated becomes a
simple LOADK (on line [1].)

LEN AB R(A) := length of R(B)

Returns the length of the object in R(B). For strings, the string length is
returned, while for tables, the table size (as defined in Lua) is returned. For
other objects, the metamethod is called. The result, which is a number, is
placed in R(A).

This instruction is new in Lua 5.1, implementing theperator. If# operates on a constant,
then the constant is loaded in advance using LOADK. JHM instruction is currently not
optimized away using compile time evaluation, even & ibperating on a constant string or
table.

>l ocal a,b; a = #b; a= #"foo0"
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0023

docal "a" ;0

Jdocal "b" ;1

.const "foo" ;0

[1] len 01

[2]loadk 2 O ; "foo"
[3] len 0 2

[4return 0 1
: end of function

In the above example, LEN operates on Idcal line [1], leaving the result in local Since
LEN cannot operate directly on constants, line [2$tfiloads the constant “foo” into a
temporary local, and only then LEN is executed.

CONCAT ABC R(A):=R(B).R(C)

Performs concatenation of two or more strings. In a Lua source, this is
equivalent to one or more concatenation operators (‘..") between two or
more expressions. The source registers must be consecutive, and C must
always be greater than B. The result is placed in R(A).

Like LOADNIL, CONCAT accepts a range of registers. @pimore than one string
concatenation at a time is faster and more effidieanmh doing them separately.

-26-

>l ocal x,y = "foo","bar"; return x..y..X..y
; function [O] definition (level 1)
; O upvalues, 0 params, 6 stacks
function 0026
Jdocal "x" ;0
Jocal "y" ;1
.const "foo" ;
.const "bar" ;
loadk O
loadk 1
move 2
move 3
move 4
move 5
concat 2
return 2 2
return 0 1
: end of function

OOO~NOUTEDWN -

In this example, strings are moved into place firsie@i[3] to [6]) in the concatenation order
before a single CONCAT instruction is executed in [iig The result is left in temporary
local 2, which is then used as a return value by the RETlo&ruction on line [8].

>l ocal a = "foo".."bar".."baz"
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0023
Jocal "a" ;0
.const "foo" ;0
.const "bar" ;1
.const "baz" ;2
[1]loadk 0 O ;
[2]loadk 1 1 ; "bar"
[8]loadk 2 2

[4Jconcat 0 0 2
[G]return 0 1

; end of function

In the second example, three strings are concatetagether. Note that there is no string
constant folding. Lines [1] through [3] loads the thremstants in the correct order for
concatenation; the CONCAT on line [4] performs thecad@enation itself and assigns the
result to locak.

-27-

10 Jumps and Calls

Lua does not have any unconditional jump feature inlahguage itself, but in the virtual
machine, the unconditional jump is used in control strestand logical expressions.

JMP sBx PC +=sBx

Performs an unconditional jump, with sBx as a signed displacement. sBx is
added to the program counter (PC), which points to the next instruction to
be executed. E.g., if sBx is 0, the VM will proceed to the next instruction.

JMP is used in loops, conditional statements, and in expressions when a
boolean true/false need to be generated.

For example, since a relational test instruction ma&esditional jumps rather than generate a
boolean result, a JMP is used in the code sequence findoaither drue or afalse:

>local m n; return m>=n
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0023

Jocal "m" ;0

Jocal "n" ;1

[1] e 11 0 ;to[3]iffalse (n <=m)
[2]jmp 1 ;to[4]

[3]loadbool 2 0 1 ;false,to[5] (f alse path)
[4] loadbool 2 1 0 ;true (t rue path)

[5]return 2 2
[6] return O 1
; end of function

Line[1] performs the relational test. In line [2], th&IP skips over the false path (line [3]) to
the true path (line [4]). The result is placed into terapplocal 2, and returned to the caller
by RETURN in line [5]. More examples where JMP is usdtibei covered in later chapters.

Next we will look at the CALL instruction, for callingstantiated functions:

CALL ABC R(A), ..., R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1))

Performs a function call, with register R(A) holding the reference to the
function object to be called. Parameters to the function are placed in the
registers following R(A). If B is 1, the function has no parameters. If B is 2
or more, there are (B-1) parameters.

If B is O, the function parameters range from R(A+1) to the top of the stack.
This form is used when the last expression in the parameter list is a
function call, so the number of actual parameters is indeterminate.

Results returned by the function call is placed in a range of registers
starting from R(A). If C is 1, no return results are saved. If C is 2 or more,
(C-1) return values are saved. If C is 0, then multiple return results are
saved, depending on the called function.

CALL always updates the top of stack value. CALL, RETURN, VARARG
and SETLIST can use multiple values (up to the top of the stack.)

-28-

Generally speaking, for fields B and C, a zero meansrihbtiple results or parameters (up to
the top of stack) are expected. If the number of resulparameters are fixed, then the actual
number is one less than the encoded field value. Héne simplest possible call:

>z()

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0022

.const "z" ;0

[1] getglobal O O) Z

[2] call 011

[B]return 0 1

; end of function

In line [2], the call has zero parameters (field B iszEyo results are retained (field C is 1),
while register 0 temporarily holds the reference toftimetion object from globat. Next we
see a function call with multiple parameters or argusment

>z(1,2,3)

; function [O] definition (level 1)

; 0 upvalues, 0 params, 4 stacks
function 0024

.const "z" ;0

.const 1 ;1

.const 2 ;2

.const 3 ;3

[1] getglobal O O) Z
[2]loadk 1 1
[8]loadk 2 2
[4]loadk 3 3
[5] call 041
[6] return O 1

; end of function

WN P

Lines [1] to [4] loads the function reference and thguarents in order, then line [5] makes
the call with an operand B value of 4, which meansetlage 3 parameters. Since the call
statement is not assigned to anything, no return resdis to be retained, hence field C is 1.
Here is an example that uses multiple parameters altighleueturn values:

>l ocal p,q,r,s = z(y())

; function [O] definition (level 1)

; O upvalues, 0 params, 4 stacks
function 0024

Jocal "p" ;0

Jocal "g" ;1

Jocal "r* ;2

Jocal "s" ;3

.const "z" ;0

.const "y" ;1

[1] getglobal

[2] getglobal
[3] call 1
[4] call 0
[G]return 0 1
; end of function

00
11
10
05

First, the function references are retrieved (linesafid [2]), then functiory is called first
(temporary register 1). The CALL has a field C of Gaming multiple return values are
accepted. These return values become the parameterstiorfun@nd so in line [4], field B

-29-

of the CALL instruction is 0, signifying multiple pararaet. After the call to functioa, 4
results are retained, so field C in line [4] is 5. Bnahere is an example with calls to
standard library functions:

>print(string.char(64))

; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0023

.const "print* ; 0

.const "string" ;1

.const “char" ;2

.const 64 ;3

getglobal 0 0O ; print
getglobal 1 1 ; string
gettable 1 1 258 ;"char"
loadk 2 3 ; 64

call 120
call 0 01
return 0 1

; end of function

~NOoO OIS WN

When a function call is the last parameter to anoftiaction call, the former can pass
multiple return values, while the latter can accept melggarameters.

Complementing CALL is RETURN:

RETURN AB return R(A), ... ,R(A+B-2)

Returns to the calling function, with optional return values. If B is 1, there
are no return values. If B is 2 or more, there are (B-1) return values,
located in consecutive registers from R(A) onwards.

If B is O, the set of values from R(A) to the top of the stack is returned. This
form is used when the last expression in the return list is a function call, so
the number of actual values returned is indeterminate.

RETURN also closes any open upvalues, equivalent to a CLOSE
instruction. See the CLOSE instruction for more information.

Like CALL, a field B value of 0 signifies multiple retuwalues (up to top of stack.)

>l ocal e,f,g; return f,g
; function [O] definition (level 1)

; 0 upvalues, 0 params, 5 stacks
function 0025

ocal "e" ;0
Jdocal "f* ;1
Jocal "g" ;2

[1] move 31
[2] move 4 2
[8]return 3 3
[4return 0 1
; end of function

In line [3], 2 return values are specified (field B valde89 The return values are placed in
consecutive registers starting from register 3 by th®@VEs on line [1] and [2]. The
RETURN in line [4] is redundant; it is always generatgedhe Lua code generator.

-30-

TAILCALL ABC return R(A)(R(A+1), ... ,R(A+B-1))

Performs a tail call, which happens when a return statement has a single
function call as the expression, e.g. return foo(bar) . Atail call is
effectively a goto, and avoids nesting calls another level deeper. Only Lua
functions can be tailcalled.

Like CALL, register R(A) holds the reference to the function object to be
called. B encodes the number of parameters in the same manner as a
CALL instruction.

Cisn’'t used by TAILCALL, since all return results are significant. In any
case, Lua always generates a 0 for C, to denote multiple return results.

A TAILCALL is used only for one specificeturn style, described above. Multiple return
results are always produced by a tail call. Here isxample:

>return x("foo", "bar")
; function [O] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
function 0023

.const "x" ;0

.const "foo" ;1

.const "bar" ;2

[1] getglobal O O) X
[2]loadk 1 1 ; "foo"
[8]loadk 2 2 ; "bar"
[4] tailcall O 3 O

[5]return 0 O

[6] return O 1

; end of function

Arguments for a tail call are handled in exactly thms way as arguments for a normal call,
so in line [3], the tail call has a field B value ofsignifying 2 parameters. Field C is 0, for
multiple returns; this due to the constant LUA_ MULTREida.h . In practice, field C is
not used by the virtual machine (except as an assec® $he syntax guarantees multiple
return results.

Line [5] is a RETURN instruction specifying multiple wet results. This is required when
the function called by TAILCALL is a C function. Ime case of a C function, execution
continues to line [5] upon return, thus the RETURN iseseary. Line [6] is redundant. When
Lua functions are tailcalled, the virtual machine doesetotrn to line [5] at all.

The other instructions covered in this section are S&ld-VARARG. Both instructions are
covered here because they are closely tied to funcaéilsy We will start with VARARG:

VARARG AB R(A), R(A+1), ..., R(A+B-1) = vararg

VARARG implements the vararg operator ‘..." in expressions. VARARG
copies B-1 parameters into a number of registers starting from R(A),
padding with nils if there aren’t enough values. If B is 0, VARARG copies
as many values as it can based on the number of parameters passed. If a
fixed number of values is required, B is a value greater than 1. If any
number of values is required, B is O.

-31-

The use of VARARG will become clear with the help déa& examples:

>l ocal a,b,c = ...

; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0023

docal "a" ;0
Jdocal "b" ;1
Jocal "c¢" ;2

[L]vararg 0 4
[2]return 0 1
; end of function

Note that the main or top-level chunk is a vararg fomgtas thas vararg flag is set (the
third number of thefunction directive) in the example above. In this example Jeéfihand
side of the assignment statement needs three valuebjécts.) So in line [1], the operand B
of the VARARG instruction is (3+1), or 4. VARARG willopy three values inta, b andc.

If there are less than three values availatuls, will be used to fill up the empty places.

>l ocal a = function(...) local a,b,c = ... end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0022

Jocal "a" ;0

; function [0] definition (level 2)

; 0 upvalues, 0 params, 4 stacks
function 0034

Jocal "arg" ;0

Jdocal "a" ;1
ocal "b" ;2
Jocal "c" ;3

[L]vararg 1 4
[2]return 0 1
; end of function

[1] closure 0 O ; 0 upvalues
[2]return 0 1
; end of function

Here is an alternate version where a function iamsted and assigned to lo@alThe old-
stylearg is retained for compatibility purposes, but is unused in loee@aexample.

>l ocal a; a(...)

; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0023

Jocal "a" ;0
[1] move 10
[2lvararg 2 O
[3] call 101
[4return 0 1

; end of function

When a function is called with..” as the argument, the function will accept a variable
number of parameters or arguments. On line [2], a VARARBG B field of O is used. The
VARARG will copy all the parameters passed on to thennshunk to register 2 onwards, so
that the CALL in the next line can utilize them as paeters of functiora. The function call

is set to accept a multiple number of parameters anchsetero results.

-32-

>local a ={...

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0022

Jocal "a" ;0

[1] newtable 0 0 0 ;array=0, hash=0
[2lvararg 1 O

[8]setlist 0 O 1 ;index1totop
[4return 0 1

; end of function

>return ...

; function [O] definition (level 1)

; O upvalues, 0 params, 2 stacks
function 0022

[L]vararg 0 O

[2]return 0 O

[B]return 0 1

; end of function

Above are two other cases where VARARG needs to copaaied parameters over to a set
of registers in order for the next operation to proceedh Ehe above forms of table creation
andreturn accepts a variable number of values or objects.

SELF ABC R(A+1):=RR(B): R(A) := R(B)[RK(C)]

For object-oriented programming using tables. Retrieves a function
reference from a table element and places it in register R(A), then a
reference to the table itself is placed in the next register, R(A+1). This
instruction saves some messy manipulation when setting up a method call.

R(B) is the register holding the reference to the table with the method. The
method function itself is found using the table index RK(C), which may be
the value of register R(C) or a constant number.

Finally, we have an instruction, SELF, which is used dbject-oriented programming. A
SELF instruction saves an extra instruction and speedbeaupalling of methods in object-
oriented programming. It is only generated for method ¢hés use the colon syntax. In the
following example:

>f 0o: bar (" baz")

; function [O] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
function 0023

.const "foo" ;0

.const "bar" ;1

.const "baz" ;2

[1] getglobal O O ; foo

[2] self 0 0 257 ;"bar"
[8]loadk 2 2 ; "baz"
[4] call 031

[G]return 0 1

; end of function

The method call is equivalent tiob.bar(foo, "baz") , except that the glob#&o is only
looked uponce. This is significant if metamethods have been see JELF in line [2] is
equivalent to a GETTABLE lookup (the table is in regi§tend the index is constant 1) and
a MOVE (copying the table reference from register Gtpster 1.)

-33-

Without SELF, a GETTABLE will write its lookup result teegister 0 (which the code
generator will normally do) and the table reference bélloverwritten before a MOVE can be
done. Using SELF saves roughly one instruction and ongdiry register slot.

After setting up the method call using SELF, the cathade with the usual CALL instruction
in line [4], with two parameters. The equivalent codeafanethod lookup is compiled in the
following manner:

>f 0o. bar (f oo, "baz")

; function [O] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
function 0023

.const "foo" ;0

.const "bar" ;1

.const "baz" ;2

[1] getglobal O O ; foo
[2] gettable O 0O 257 ; "bar"
[3] getglobal 1 0O ; foo
[4]loadk 2 2 ; "baz"
[5] call 031

[6] return O 1

; end of function

The alternative form of a method call is one instauctonger, and the user must take note of
any metamethods that may affect the call. The SHELEtheé previous example replaces the
GETTABLE on line [2] and the GETGLOBAL on line [3].1bo is a local variable, then the
equivalent code is a GETTABLE and a MOVE.

Next we will look at more complicated instructions.

-34-

11 Relational and Logic Instructions

Relational and logic instructions are used in conjunctidh other instructions to implement

control structures or expressions. Instead of gengrdioolean results, these instructions
conditionally perform a jump over the next instructidhe emphasis is on implementing
control blocks. Instructions are arranged so that thezetwo paths to follow based on the
relational test.

EQ ABC if ((RK(B) == RK(C)) ~= A) then PC++
LT ABC if (RK(B) < RK(C))~=A) then PC++
LE ABC if (RK(B) <= RK(C)) ~= A) then PC++

Compares RK(B) and RK(C), which may be registers or constants. If the
boolean result is not A, then skip the next instruction. Conversely, if the
boolean result equals A, continue with the next instruction.

EQ is for equality. LT is for “less than” comparison. LE is for “less than or
equal to” comparison. The boolean A field allows the full set of relational
comparison operations to be synthesized from these three instructions.
The Lua code generator produces either 0 or 1 for the boolean A.

For the fall-through case, a JMP is always expected, in order to optimize
execution in the virtual machine. In effect, EQ, LT and LE must always be
paired with a following JMP instruction.

By comparing the result of the relational operatiorhviit the sense of the comparison can be
reversed. Obviously the alternative is to reverse thiespaken by the instruction, but that
will probably complicate code generation some more. ddmitional jump is performed if
the comparison result is not A, whereas execution aoesgimormally if the comparison result
matches A. Due to the way code is generated and thehsayrtual machine works, a JIMP
instruction is always expected to follow an EQ, LT or Tke following JMP is optimized by
executing it in conjunction with EQ, LT or LE.

>l ocal X,y; return x ~=y
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0003

Jocal "x" ;0

Jocal "y" ;1

1] loadnil 0 1

2] eq 0 0 1 ;to[4]iftrue (x ~=y)

3] jmp 1 ; to [5]

4] loadbool 2 0 1 ;false, to[6] (fa Ise result path)
5] loadbool 2 1 0 ;true (tr ue result path)
6] return 2 2

7lretun 0 1

: end of function

In the above example, the equality test is performedine [2]. However, since the
comparison need to be returned as a result, LOADBOOL irtgtnscare used to set a register
with the correct boolean value. This is the usual codeenpagenerated if the expression
requires a boolean value to be generated and storedgisteras an intermediate value or a
final result.

-35-

It is easier to visualize the disassembled code as:

if Xx ~= 'y then
return true
else
return false
end

The true result path (when the comparison result matdhgoes like this:

[1] loadnil O 1

[2] eq 0 0 1 ;to[4]iftrue (x ~=y)
[B]jmp 1 ;to [9]

[5] loadbool 2 1 0 ;true (tr ue path)

[6] return 2 2

while the false result path (when the comparison releds not match A) goes like this:

[1] loadnil 0 1
[2] eq 0 0 1 ;to[4]iftrue (x ~=y)
[4] loadbool 2 0 1 ;false,to[6] (fa Ise path)

[6] return 2 2

ChunkSpy comments the EQ in line [2] by letting the usemkwben the conditional jump is
taken. The jump is taken when “the value in registeq@als to the value in register 1” (the
comparison) is ndtalse (the value of operand A). If the comparisonx is=y, everything will
be the same except that the A operand in the EQ instrueiiooe 1, thus reversing the sense
of the comparison. Anyway, these are just the Lua cetergtor's conventions; there are
other ways to code ~=y in terms of Lua virtual machine instructions.

For conditional statements, there is no need tobeetean results. Lua is optimized for
coding the more common conditional statements rakiagr conditional expressions.

>l ocal x,y; if X ~=y then return "foo" else return "bar" end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks

function 0023
Jocal "x" ;0
Jocal "y" ;1
.const "foo" ;0
.const "bar" ;1
eq 0
Jmp
loadk

1 1 ;to[3]iffalse (x ~=y)

3

2
return 2

2

2

2

; to [6]
; "foo" (t rue block)

N O

;1o [8]
; "bar" (f alse block)

Jjmp

loadk
return
return O

: end of functio

O~NOO UL WN -

SRrNpR

In the above conditional statement, the same inegu@ierator is used in the source, but the
sense of the EQ instruction in line [1] is now reversgidce the EQ conditional jump can

only skip the next instruction, additional JMP instructioresreeeded to allow large blocks of

code to be placed in both true and false paths. Itrasinin the previous example, only a
single instruction is needed to set a boolean valueifFsitatements, the true block comes
first followed by the false block in code generated gy tode generator. To reverse the
positions of the true and false paths, the value of ojekas changed.

-36-

The true path (wher ~=y is true) goes from [1] to [3]-[5] and on to [8]. Since thsra
RETURN in line [4], the JMP in line [5] and the RETURMN[8] are never executed at all;
they are redundant but does not adversely affect penfmeniaa any way. The false path is
from [1] to [2] to [6]—[8] onwards. So in a disassemblyirig, you should see the true and
false code blocks in the same order as in the Lua source.

The following is another example, this time withehseif:

>f 8 >9 then return 8 elseif 5 >= 4 then return 5 else return 9 end
; function [O] definition (level 1)

; O upvalues, 0 params, 2 stacks

function 0022

.const 8 ;0

.const 9 ;1

.const 5 ;2

.const 4 ;3

01] It 0 257256 ;9 8,to[3]iftrue (9<8)

02] jmp ; to [6]

03] loadk 0 ;8 (1st true block)

04] return 2

05] jmp ; to [13]

06] le 0 259258 ;45,to[8]if true (4<=5)

07] jmp ; to [11]

08] loadk 5

09] return
10] jmp
11] loadk
12] return
13] return
: end of functi

\IOOOO

(2nd true block)

NOO‘.A)
N

; to [13]
;9 (2nd false block)

O O0OO0o
PN

n

This example is a little more complex, but the blodksstructured in the same order as the
Lua source, so interpreting the disassembled code shautet noo hard.

Next are the two instructions used for performing baoteats and implementing Lua’s logic
operators:

TEST AC if not (R(A) <=> C) then PC++
TESTSET ABC if (R(B) <=>C)then R(A) := R(B) else PC++

Used to implement and and or logical operators, or for testing a single
register in a conditional statement.

For TESTSET, register R(B) is coerced into a boolean and compared to
the boolean field C. If R(B) matches C, the next instruction is skipped,
otherwise R(B) is assigned to R(A) and the VM continues with the next
instruction. The and operator uses a C of 0 (false) while or uses a C value
of 1 (true).

TEST is a more primitive version of TESTSET. TEST is used when the
assignment operation is not needed, otherwise it is the same as TESTSET
except that the operand slots are different.

For the fall-through case, a JMP is always expected, in order to optimize
execution in the virtual machine. In effect, TEST and TESTSET must
always be paired with a following JMP instruction.

-37-

TEST and TESTSET are used in conjunction with a falbgwJMP instruction, while
TESTSET has an addditional conditional assignment. Like I[HQand LE, the following
JMP instruction is compulsory, as the virtual machind eslecute the JMP together with
TEST or TESTSET. The two instructions are used toemgeint short-circuit LISP-style
logical operators that retains and propagates operandsvaistead of booleans. First, we’ll
look at howand andor behaves:

>l ocal a,b,c; ¢c =aand b
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0023

docal "a" ;0

Jdocal "b" ;1

Jocal "c¢" ;2

[L]testset 2 0 0 ;to[3]iftrue
[2] jmp 1 ; to [4]

[3] move 21
[4return 0 1
; end of function

An and sequence exits ofalse operands (which can befalse or nil) because anyalse
operands in a string adnd operations will make the whole boolean expresdimse. If
operands evaluates toue, evaluation continues. When a stringanfd operations evaluates
to true, the result is tHast operand value.

In line [1], the first operand (the loca) is set to locat when the test ifalse (with a field C
of 0), while the jump to [3] is made when the tedrrise, and then in line [3], the expression
result is set to the second operand (the Ibgarhis is equivalent to:

if a then

c=b --executed by MOVE on line [3]
else

c=a --executed by TESTSET on line [1]
end

Thec = a portion is done by TESTSET itself, while MOVE perforaws b. Now, if the result
is already set with one of the possible values, a TiBSTuction is used instead:

>l ocal a,b; a =aand b
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0022

docal "a" ;0

Jdocal "b" ;1

[1] test 0 0 ;to[3]iftrue
[2] jmp 1 ; to [4]

[3] move 01
[4return 0 1
; end of function

The TEST instruction does not perform an assignment aperaincea = a is redundant.
This makes TEST a little faster. This is equivalent to:

if a then
a=b
end

Next, we will look at ther operator:

-38-

>l ocal a,b,c; c =aorb
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0023

docal "a" ;0

Jdocal "b" ;1

Jocal "c¢" ;2

[l]testset 2 0 1 ;to([3]iffalse
(2] jmp 1 ; to [4]

[3] move 21
[4return 0 1
; end of function

An or sequence exits dnue operands, because any operands evaluating te in a string of
or operations will make the whole boolean expressiae. If operands evaluates false,
evaluation continues. When a string af operations evaluates false, all operands must
have evaluated ti@lse.

In line [1], the locak value is set to locat if it is true, while the jump is made if it &lse
(the field C is 1). Thus in line [3], the lochlvalue is the result of the expression if loaal
evaluates tdalse. This is equivalent to:

if a then

c=a --executed by TESTSET on line [1]
else

c=b --executed by MOVE on line [3]
end

Like the case oéind, TEST is used when the result already has one obdhleible values,
saving an assignment operation:

>l ocal a,b; a=aor b

; function [O] definition (level 1)

; O upvalues, 0 params, 2 stacks
function 0022

docal "a" ;0

Jdocal "b" ;1

[1] test 0 1 ;to[3]iffalse
[2] jmp 1 ; to [4]

[3] move 01
[4return 0 1
; end of function

Short-circuit logical operators also means that ¢flewing Lua code does not require the use
of a boolean operation:

>l ocal a,b,c; if a>b and a > c then return a end
; function [0] definition (level 1)

; O upvalues, 0 params, 3 stacks

function 0023

docal "a" ;0

Jdocal "b" ;1

Jocal "c¢" ;2

[1] It 0 1 0 ;to[3]iftrue
[2] jmp 3 ; to [6]

[3] 1t 0 2 0 ;to[5]iftrue
[4] jmp 1 ; to [6]

[5]return 0 2
[6] return O 1
; end of function

-39-

With short-circuit evaluatiora > c is never executed & > b is false, so the logic of the Lua
statement can be readily implemented using the noramalitional structure. If botla > b
anda > c aretrue, the path followed is [1] (tha > b test) to [3] (thea > c test) and finally to
[5], returning the value . A TEST instruction is not required. This is equivalent

if a> b then
if a> c then
return a
end
end

For a single variable used in the expression partooingitional statement, TEST is used to
boolean-test the variable:

> f Done then return end
; function [O] definition (level 1)

; O upvalues, 0 params, 2 stacks
function 0022

.const "Done" ;0

[1] getglobal O O ; Done
[2] test 0 0 ;to[4]iftrue
[B]jmp 1 ;to[9]

[4return 0 1
[G]return 0 1
; end of function

In line [2], the TEST instruction jumps to the true blatkhe value in temporary register 0
(from the globalDone) is true. The JMP at line [3] jumps over the true block, whighhe
code inside thé block (line [4].)

If the test expression of a conditional statementisbrof purely boolean operators, then a
number of TEST instructions will be used in the usual stiostiit evaluation style:

> f Found and Match then return end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0022

.const "Found" ;0

.const "Match" ;1

1] getglobal 0 0O ; Found
2] test 0 0 ;to[4]iftrue
3] jmp 4 ; to [8]

4] getglobal 0 1 ; Match

5] test 0 0 ;to[7]iftrue
6] jmp 1 ; to [8]
7lreturn 0 1

8]return 0 1

: end of function

In the last example, the true block of the conditictatement is executed only if bdtbund
and Match evaluates tdrue. The path is from [2] (test faFound) to [4] to [5] (test for
Match) to [7] (the true block, which is an explickturn statement.)

If the statement has ase section, then the JMP on line [6] will jump to thes@ablock (the
else block) while an additional JMP will be added to the truecklto jump over this new
block of code. Ifor is used instead acdnd, the appropriate C operand will be adjusted
accordingly.

-40-

Finally, here is how Lua’s ternary operatc? in C) equivalent works:

>l ocal a,b,c; a =a and b or ¢
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0023

Jocal "a" ;0

Jocal "b" ;1

Jocal "¢" ;2

[1] test 0 0 ;to[3]iftrue
[2]jmp 2 ;to[5]
[B]testset 0 1 1 ;to([5]iffalse
[4]jmp 1 ;to [6]

[5] move 0 2
[6] return 0 1
; end of function

The TEST in line [1] is for thand operator. First, locad is tested in line [1]. If it idalse,
then execution continues in [2], jumping to line [5]. L{®¢ assigns locat to the end result
because since # is false, thena and b is false, andfalse or cisc.

If local aistruein line [1], the TEST instruction makes a jump to I[8& where there is a
TESTSET, for ther operator. Ifb evaluates tdrue, then the end result is assigned the value
of b, becausé or cisb if b is notfalse. If b is alsofalse, the end result will be.

For the instructions in line [1], [3] and [5], the tar@etfield A) is register O, or the loca,
which is the location where the result of the booleapression is assigned. The equivalent
Lua code is:

if a then
if b then
a=b
else
a=c
end
else
a=c
end

The twoa = c assignments are actually the same piece of code, bremated here to avoid
using agoto and a label. Normally, if we assume b is fabse and notil, we end up with the
more recognizable form:

if a then

a=b --assumingb ~= false
else

a=c
end

-41-

12 Loop Instructions

Lua has dedicated instructions to implement the two tgbésr loops, while the other two
types of loops uses traditional test-and-jump.

FORPREP A sBx R(A) -= R(A+2); PC +=sBx
FORLOOP AsBx R(A) += R(A+2)
if R(A) <?= R(A+1) then {
PC +=sBx; R(A+3) = R(A)
}

FORPRERP initializes a numeric for loop, while FORLOOP performs an
iteration of a numeric for loop.

A numeric for loop requires 4 registers on the stack, and each register
must be a number. R(A) holds the initial value and doubles as the internal
loop variable (the internal index); R(A+1) is the limit; R(A+2) is the stepping
value; R(A+3) is the actual loop variable (the external index) that is local to
the for block.

FORPREP sets up a for loop. Since FORLOORP is used for initial testing of
the loop condition as well as conditional testing during the loop itself,
FORPREP performs a negative step and jumps unconditionally to
FORLOOP so that FORLOORP is able to correctly make the initial loop test.
After this initial test, FORLOOP performs a loop step as usual, restoring
the initial value of the loop index so that the first iteration can start.

In FORLOOP, a jump is made back to the start of the loop body if the limit
has not been reached or exceeded. The sense of the comparison depends
on whether the stepping is negative or positive, hence the “<?=" operator.
Jumps for both instructions are encoded as signed displacements in the
sBx field. An empty loop has a FORLOOP sBx value of -1.

FORLOOP also sets R(A+3), the external loop index that is local to the
loop block. This is significant if the loop index is used as an upvalue (see
below.) R(A), R(A+1) and R(A+2) are not visible to the programmer.

The loop variable ends with the last value before the limit is reached
(unlike C) because it is not updated unless the jump is made. However,
since loop variables are local to the loop itself, you should not be able to
use it unless you cook up an implementation-specific hack.

Loop indices behave a little differently in Lua 5.1 gared to Lua 5.0.2. Consider the
following, where loop indexis used as an upvalue in the instantiation of 10 funstio

local a = {}
fori=1,10do

a[i] = function() return i end
end

print(a[5]()

Lua 5.0.2 will print out 10, while Lua 5.1 will print oGt In Lua 5.0.2, the scope of the loop
index encloses ther loop, resulting in the creation of a single upvalue. In Luatbd Joop
index is truly local to the loop, resulting in theatien of 10 separate upvalues.

-42-

For the sake of efficiency, FORLOOP contains a lofuattionality, so when a loop iterates,
only oneinstruction, FORLOOP, is needed. Here is a simple exampl

>l ocal a =0; for i =1,100,5 do a = a + i end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 5 stacks

function 0025

Jocal "a" ;0

Jocal "(forindex)" ;1

Jocal "(for limit)" ; 2

Jocal "(for step)" ;3

Jdocal "i" ;4

.const O ;0

.const 1 ;1

.const 100 ;2

.const 5 ;3

1]loadk 0 O ;0
2]loadk 1 1 01
3]loadk 2 2 : 100
4] loadk 3 3 ;5

5] forprep 1 1 ;to [7]
6] add 00 4

7] forloop 1 -2 ; to [6] if loop
8lreturn 0 1

: end of function

In the above example, notice that tbe loop causes three additional local pseudo-variables
(or internal variables) to be defined, apart from themsl loop indexj. The three pseudo-
variables, namefor index), (for limit) and(for step) are required to completely specify the
state of the loop, and are not visible to Lua source coldey @re arranged in consecutive
registers, with the external loop index given by R(A+3)egiister 4 in the example.

The loop body is in line [6] while line [7] is the FORIOP instruction that steps through the
loop state. The sBx field of FORLOOP is negativeit abwvays jumps back to the beginning
of the loop body.

Lines [2]—[4] initializes the three register locatiombere the loop state will be stored. If the
loop step is not specified in the Lua source, a cohdtas added to the constant pool and a
LOADK instruction is used to initialize the pseudo-variafht@ step) with the loop step.

FORPREP in lines [5] makes a negative loop step and jaoniose [7] for the initial test. In
the example, at line [5], the internal loop indexr@dister 1) will be (1-5) or -4. When the
virtual machine arrives at the FORLOOP in line [7] for fingt time, one loop step is made
prior to the first test, so the initial value that isuadly tested against the limit is (-4+5) or 1.
Since 1 < 100, an iteration will be performed. The extdow indexi is then setto 1 and a
jump is made to line [6], thus starting the first itera of the loop.

The loop at line [6]-[7] repeats until the internal loop k@xceeds the loop limit of 100.
The conditional jump is not taken when that occurs tiwedoop ends. Beyond the scope of
the loop body, the loop statéfdr index), (for limit), (for step) andi) is not valid. This is
determined by the parser and code generator. The range \@lies for which the loop state
variables are valid is located in the locals listeTirief assembly listings generated by
ChunkSpy that you are seeing does not givestlepc andendpc values contained in the
locals list. In theory, these rules can be brokenuf woite Lua assembly directly.

-43-

>for i =10,1,-1 do if i == 5 then break end end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 4 stacks

function 0024

Jocal "(forindex)" ;0

Jocal "(for limit)" ; 1

Jocal "(for step)" ; 2

Jocal "i" ;3

.const 10 ;0

.const 1 ;1

.const -1 ;2

.const 5 ;3

1]loadk 0 O ;10

2]loadk 1 1 01

3]loadk 2 2 -1

4] forprep 0 3 ; to [8]

5] eq 0 3 259 ;5,to[7]if true
6] jmp 1 ; to [8]

71 jmp 1 ; to [9]

8] forloop 0 -4 ; to [5] if loop
Olreturn 0 1

: end of function

In the second loop example above, except for a neglatop step size, the structure of the
loop is identical. The body of the loop is from line {B]line [8]. Since no additional stacks
or states are usedbaeak translates simply to a JMP instruction (line [7]). fédhés nothing

to clean up after a FORLOOP ends or after a JMP tadaibp.

Apart from a numeridor loop (implemented by FORPREP and FORLOOP), Lua has a
genericfor loop, implemented by TFORLOOP:

TFORLOOP AC R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
if R(A+3) ~= nil then {
R(A+2) = R(A+3);
} else {
PC++;

}

Performs an iteration of a generic for loop. A Lua 5-style generic for loop
keeps 3 items in consecutive register locations to keep track of things. R(A)
is the iterator function, which is called once per loop. R(A+1) is the state,
and R(A+2) is the enumeration index. At the start, R(A+2) has an initial
value. R(A), R(A+1) and R(A+2) are internal to the loop and cannot be
accessed by the programmer; at first, they are set with an initial state.

In addition to these internal loop variables, the programmer specifies one
or more loop variables that are external and visible to the programmer.
These loop variables reside at locations R(A+3) onwards, and their count is
specified in operand C. Operand C must be at least 1. They are also local
to the loop body, like the external loop index in a numerical for loop.

Each time TFORLOOP executes, the iterator function referenced by R(A)
is called with two arguments: the state and the enumeration index (R(A+1)
and R(A+2).) The results are returned in the local loop variables, from
R(A+3) onwards, up to R(A+2+C).

-44-

Next, the first return value, R(A+3), is tested. If it is nil, the iterator loop is
at an end, and TFORLOOP skips the next instruction and the for loop
block ends. Note that the state of the generic for loop does not depend on
any of the external iterator variables that are visible to the programmer.

If R(A+3) is not nil, there is another iteration, and R(A+3) is assigned as
the new value of the enumeration index, R(A+2). Then next instruction,
which must be a JMP, is immediately executed, sending execution back to
the beginning of the loop. This is an optimization case; TFORLOOP will not
work correctly without the JMP instruction.

Like the numericalfor loop, the generidor loop behave a little differently in Lua 5.1
compared to Lua 5.0.2. In the following example:

local a = {[1]=2,[2]=4,[3]=8}
local b = {}
for i,v in pairs(a) do

b[i] = function() return v end
end

print(b[1](), b[2]0), b[3]()

Lua 5.0.2 will print out 3ils, while Lua 5.1 will print out 2, 4 and 8. In Lua 5.0.2 Htope
of the external iterator variables encloses fihreloop, resulting in the creation of a single
upvalue. In Lua 5.1, the iterator variables are truly logdhe loop, resulting in the creation
of separate upvalues.

This example has a loop with one additional res)lin addition the loop enumeratay:(

>for i,vin pairs(t) do print(i,v) end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 8 stacks

function 0028

Jocal "(for generator)" ;0

Jocal "(for state)" ; 1
Jocal "(for control)" ; 2
Jocal "i* ;3

Jocal "v" ;4

.const "pairs" ;0
.const "t" ;1

.const "print" ; 2

01] getglobal

02] getglobal

03] call 0

04] jmp 4 ; to [9]

00 ; pairs
11
2 4

05] getglobal 5 2 ; print
6 3
7 4

it

06] move

07] move

08] call 531

09] tforloop O 2 ;to[11] if exit
10] jmp -6 ; to [5]
11]return 0 1

: end of function

The iterator function is located in register 0, andasned(for generator) for debugging
purposes. The state is in register 1, and has the (famgate). The enumeration indexor
control), is contained in register 2. These correspond taldoR(A), R(A+1) and R(A+2) in
the TFORLOOP description. Results from the iterator tionccall is placed into register 3

-45-

and 4, which are locaisandv, respectively. On line [9], the operand C of TFORLOOR,is
corresponding to two iterator variablesa(dv).

Line [1]-[3] prepares the iterator state. Note thatctdeto thepairs standard library function
has 1 parameter and 3 results. After the call in [Bje register 0 is the iterator function,
register 1 is the loop state, register 2 is the initédlie of the enumeration index. The iterator
variablesi andv are both invalid at the moment, because we havemetesl the loop yet.

Line [4] is a JMP to TFORLOOP on line [9]. With thetial (or zeroth) iterator state,
TFORLOORP calls the iterator function, generating thst et of enumeration results in locals
i, v. If i is notnil, the internal enumeration index (register 2) is sdtthe JMP on the next
line is immediately executed, starting the first itiemaof the loop body (lines [5]-[8]).

The body of the generidor loop executes p(int(i,v)) and then TFORLOOP is
encountered again, calling the iterator function totbetnext iteration state. Finally, when
the first result is ail, the loop ends, and execution continues on line [11].

repeat andwhile loops use a standard test-and-jump structure. Hereegeat loop:

>local a =0; repeat a =a + 1 until a == 10
; function [O] definition (level 1)

; O upvalues, 0 params, 2 stacks

function 0022

docal "a" ;0

.const O ;0

.const 1 ;1

.const 10 ;2

[1]loadk 0 O ;0

[2] add 0 0 257 ;1

[3] eq 0 0 258 ;10,to[5]if true
[4] jmp -3 ;o [2]

[G]return 0 1
: end of function

The body of theepeat loop is line [2], while the test-and-jump scheme iplamented in
lines [3] and [4]. Although two instructions are needed oplthe loop, Lua 5.1 executes EQ
and JMP together, saving some time.

>local a =1; while a <10 do a=a + 1 end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0022

docal "a" ;0
.const 1 ;0
.const 10 ;1

[1]loadk 0 O 71
[2] It 0 0 257 ; 10, to [4] if true

[3]jmp 2 ; to [6]
[4Jadd 0 0 256 ;1
[5]jmp -4 ;o [2]

[6] return O 1
: end of function

For awhile loop, the test (line[2]) is made first. If the testiisie, execution continues with
the loop body (line [4]). A JMP on line [5] returns execntto the loop test instruction. This
is a little different from Lua 5.0.@hile loops, which have the loop test at the end of the loop
block and has a loop condition size limitation.

-46-

A while loop in the Lua 5.0.2 style will look like this:

>local a =1; while a <10 do a=a+ 1 end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0022

docal "a" ;0

.const 1 ;0

.const 10 ;1

[1]loadk 0 O 71
[2] jmp 1 , to [4]

[3] add 0 0 256 ;1

[4] 1t 1 0 257 ;10,to[6]if false
[5]jmp -3 ;1o [3]

[6] return 0 1

; end of function

The sense of the condition test is reversed, whildoihye body is at line [3]. The condition
test is made at the end of the loop on line [4].

-47-

13 Table Creation

There are two instructions for table creation andailidtation. One instruction creates a table
while the other instruction sets the array elementstable.

NEWTABLE ABC R(A):={} (size = B,C)

Creates a new empty table at register R(A). B and C are the encoded size
information for the array part and the hash part of the table, respectively.
Appropriate values for B and C are set in order to avoid rehashing when
initially populating the table with array values or hash key-value pairs.

Operand B and C are both encoded as a “floating point byte” (so named in
lobject.c) which is eeeeexxx in binary, where x is the mantissa and e

is the exponent. The actual value is calculated as 1xxx*2”(eeeee-1) if

eeeee is greater than 0 (a range of 8 to 15*2”30.) If eeeee is 0, the actual
value is xxx (arange of 0to 7.)

If an empty table is created, both sizes are zero. If a table is created with a
number of objects, the code generator counts the number of array
elements and the number of hash elements. Then, each size value is
rounded up and encoded in B and C using the floating point byte format.

Creating an empty table forces both array and hasels sizbe zero:

>l ocal q = {}

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0022

Jocal "g" ;0

[1] newtable 0 0 0 ;array=0, hash=0
[2]return 0 1

; end of function

In later examples, we will see how the size valuesemcoded. But first, we need to learn
about the SETLIST instruction, which is used to initiabzreay elements in a table.

SETLIST ABC R(A)(C-1)*FPF+i] := R(A+), 1 <= i<=B

Sets the values for a range of array elements in a table referenced by
R(A). Field B is the number of elements to set. Field C encodes the block
number of the table to be initialized. The values used to initialize the table
are located in registers R(A+1), R(A+2), and so on.

The block size is denoted by FPF. FPF is “fields per flush”, defined as
LFIELDS PER_FLUSH in the source file lopcodes.h , with a value of 50.
For example, for array locations 1 to 20, C will be 1 and B will be 20.

If B is O, the table is set with a variable number of array elements, from
register R(A+1) up to the top of the stack. This happens when the last
element in the table constructor is a function call or a vararg operator.

If C is 0, the next instruction is cast as an integer, and used as the C value.
This happens only when operand C is unable to encode the block number,
i.e. when C > 511, equivalent to an array index greater than 25550.

-48-

We'll start with a simple example:

>| ocal

q

={1,2,3,4,5,}

; function [O] definition (level 1)

; 0 upvalues, 0 params, 6 stacks
function 0026

Jocal "g" ;0

.const 1 ;
.const 2 ;
.const 3 ;
.const 4 ;
.const 5 ;

O~NOUTHDWN -

: end of functio

AWNEFLO

newtable 0 5 0 ;array=5, hash=0

loadk
loadk
loadk
loadk
loadk
setlist
return

1 1
2 12
3 03
4 14
5 5

mbwmpo

0 1 ;Wndexltos

0

Sk

A table with the reference in register O is createtine [1] by NEWTABLE. Since we are
creating a table with no hash elements, the arraygbdhe table has a size of 5, while the
hash part has a size of 0.

Constants are then loaded into temporary register$ {litwes [2] to [6]) before the SETLIST
instruction in line [7] assigns each value to consecutibpéetelements. The start of the block
is encoded as 1 in operand C. The starting indexlasilated as (1-1)*50+1 or 1. Since B is
5, the range of the array elements to be set becarte®, while the objects used to set the
array elements will be R(1) through R(5).

Next is a larger table with 55 array elements. Thisraqguire two blocks to initialize. Some
lines have been removed and ellipsis (...) added to sage.spa

>| ocal 1,2,3,4,5
>>1,2,3,4,5,6,7,8,9,0,
>>1,2,3,4,5,6,7,8,9,0,
; function [0] definition (level 1

q = {

|4|

8
l3l
3

L) 1l 2l 3! 4l 5l 6l 7! 8l gl Ol \
l6l 7! 8l gl Ol \
}

NN N
A DO
1010

lgl

~ R RO

; 0 upvalues, 0 params, 51 stacks
function 00251

Jocal "g" ;0

.const 1 ;0

.const 2 ;1

:éonst 0:9

01
02
03

loadk
loadk

loadk
setlist
loadk
loadk

loadk
setlist
return

newtable 0 30 O ;array=56, hash=0

N =
= O

0
5

01
12
;0

©un

1 ;index 1to50

I—‘00©

1
2
5

N
g N

05 2 :i
01

dex 51 to 55

>

: end of function

-49-

Since FPF is 50, the array will be initialized in twodKs. The first block is for index 1 to
50, while the second block is for index 51 to 55. Eachyasl@ck to be initialized requires
one SETLIST instruction. On line [1], NEWTABLE has adié8 value of 30, or 00011110 in
binary. From the description of NEWTABLExx is 11Q, while eeeee is 1L. Thus, the size
of the array portion of the table is (1110)*2”*(11-1) or (14*225®.

Lines [2] to [51] sets the values used to initialize tret block. On line [52], SETLIST has a
B value of 50 and a C value of 1. So the block is from 1 t&b60rce registers are from R(1)
to R(50). Lines [53] to [57] sets the values used to liddathe second block. On line [58],
SETLIST has a B value of 5 and a C value of 2. So thekbéofrom 51 to 55. The start of the
block is calculated as (2-1)*50+1 or 51. Source registers@reR(1) to R(5).

Here is a table with hashed elements:

>l ocal q = {a=1, b=2, c=3, d=4, e=5, f =6, g=7, h=8, }
; function [O] definition (level 1)

; O upvalues, 0 params, 2 stacks

.function O 0 22

Jocal ' q

.const ' 0
.const 1 1
.const "b" ;2
.const 2 3
.const ' 14
.const 3 5
.const "d" ;6
.const 4 7
.const ' 18
.const 5 9

.const "f" ;10

.const 6 ;11

.const "g" ; 12

.const 7 ;13

.const "h" ;14

.const 8 ;15

Ol] newtable 0 0 8 , array= =0, hash=8
02] settable 256 257
03] settable 258 259 ;
04] settable 260 261 ;"c"
05] settable 262 263 ;"d"
06] settable 264 265 ; "e"
07] settable 266 267 ;"f"
08] settable 268 269 ;"g"
09] settable 270271 ;"h"
10]return 0 1

: end of function

Oooococococoo
SC40o0ow
BN AEWN

In line [1], NEWTABLE is executed with an array part s&f& and a hash part size of 8. On
lines [2] to line [9], key-value pairs are set using SETLEBThe SETLIST instruction is
only for initializing array elements. Using SETTABLE itatialize the key-value pairs of a
table in the above example is quite efficient asit 2ference the constant pool directly.

If there are both array elements and hash elemerdgaile constructor, both SETTABLE
and SETLIST will be used to initialize the table afiee initial NEWTABLE. In addition, if
the last element of the table constructor is a functall or a vararg operator, then the B
operand of SETLIST will be 0, to allow objects from R@ up to the top of the stack to be
initialized as array elements of the table.

-50-

>return {1, 2, 3,a=1, b=2,c=3,foo()}
; function [O] definition (level 1)

; 0 upvalues, 0 params, 5 stacks

function 0025

.const 1 ;0

.const 2 ;1

.const 3 ;2

.const "a" ;3

.const "b" ;4

.const "c" ;5

.const "foo" ;6

Ol] newtable 0 3 3 ;array=3, hash=3

02]loadk 1 O 01
03]loadk 2 1 12
O4]loadk 3 2 13

05] settable 0 259 256 ;"a"
06] settable 0 260 257 ;"b"
07] settable 0 261 258 ;"c"
08] getglobal 4 6 ; foo
09] call 4 10
10]setlist 0 O 1 ;index1totop
11]return 0 2

12]return 0 1

: end of function

QT o
WN -

In the above example, the table is first createchim [IL] with its reference in register 0, and it
has both array and hash elements to be set. The dize afray part is 3 while the size of the
hash part is also 3.

Lines [2]-[4] loads the values for the first 3 array eletaeLines [5]-[7] sets the 3 key-value
pairs for the hash part of the table. In lines [8] andtf8],call to functiorfoo is made, and
then in line [10], the SETLIST instruction sets thatfi8 array elements (in registers 1 to 3)
plus whatever additional results returned by fiteefunction call (from register 4 onwards.)
This is accomplished by setting operand B in SETLIST t600.the first block, operand C is
1 as usual. If no results are returned by the functimnfop of stack is at register 3 and only
the 3 constant array elements in the table are set.

>l ocal a; return {a(), a(), a()}
; function [O] definition (level 1)

; 0 upvalues, 0 params, 5 stacks

function 0025

Jocal "a" ;0

Ol]lnewtable 1 2 0 ;array=2, hash=0
02] move 20
03] call 212
04] move 30
05] call 312
06] move 4 0
07] call 4 10
08]setlist 1 0 1
09]return 1 2
10]return 0 1
; end of function

; index 1 to top

Note that only the last function call in a table stonctor retains all results. Other function
calls in the table constructor keep only one result. Bh&hown in the above example. For
vararg operators in table constructors, please see thesslisn for the VARARG instruction
for an example.

-51-

14 Closures and Closing

The final two instructions of the Lua virtual machine ardittle involved because of the
handling of upvalues. The first is CLOSURE, for inskatinig function prototypes:

CLOSURE A Bx R(A) := closure(KPROTO[BX], R(A), ... ,R(A+n))

Creates an instance (or closure) of a function. Bx is the function number of
the function to be instantiated in the table of function prototypes. This table
is located after the constant table for each function in a binary chunk. The
first function prototype is numbered 0. Register R(A) is assigned the
reference to the instantiated function object.

For each upvalue used by the instance of the function KPROTO[BX], there
is a pseudo-instruction that follows CLOSURE. Each upvalue corresponds
to either a MOVE or a GETUPVAL pseudo-instruction. Only the B field on
either of these pseudo-instructions are significant.

A MOVE corresponds to local variable R(B) in the current lexical block,
which will be used as an upvalue in the instantiated function. A
GETUPVAL corresponds upvalue number B in the current lexical block.
The VM uses these pseudo-instructions to manage upvalues.

If the function prototype has no upvalues, then CLOSURRretty straightforward: Bx has
the function number and R(A) is assigned the referdncthe instantiated function object.
However, when an upvalue comes into the picture, we toale@k a little more carefully:

>l ocal u; \

>>function p() return u end
; function [O] definition (level 1)

; O upvalues, 0 params, 2 stacks
function 0022

Jocal "u" ;0

.const "p" ;0

; function [0] definition (level 2)

; 1 upvalues, 0 params, 2 stacks
function 1002

.upvalue "u" ;0

[1] getupval O O ;U

[2] return O 2

[B]return 0 1

; end of function

[1] closure 1 O ; 1 upvalues
[2] move 00

[3] setglobal 1 0O

[4return 0 1

; end of function

In the example, the upvalue in the level 2 function,iand within the main chunk there is a
single function prototype (indented in the listing abéoreclarity.) In the top-level function,
line [1], the closure is made. In line [3] the functi@fierence is saved into glokal Line [2]

is a part of the CLOSURE instruction (it not really atual MOVE,) and its B field specifies
that upvalue number 0 in the closed function is reatigllo in the enclosing function.

-52-

Here is another example, with 3 levels of function giygies:

>l ocal m\

>>function p() \

>> |ocal n\

>> function () return mn end \
>>end

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0022

Jocal "m" ;0

.const "p" ;0

; function [0] definition (level 2)

; 1 upvalues, 0 params, 2 stacks
function 1002

Jocal "n" ;0

.upvalue "m" ;0

.const "q" ;0

; function [0] definition (level 3)

; 2 upvalues, 0 params, 2 stacks
function 2002

.upvalue "m" ;0

.upvalue "n" ;1

[1] getupval O O ;m

[2] getupval 1 1 ;N
[8]return 0 3

[4return 0 1

; end of function

[1] closure 1 O ; 2 upvalues
[2] getupval 0 O ;m

[3] move 00

[4] setglobal 1 O e
[G]return 0 1

; end of function

[1] closure 1 O ; 1 upvalues
[2] move 00

[3] setglobal 1 0 P
[4return 0 1

; end of function

First, look at the top-level function and the leveluBdtion — there is one upvalus, In the
top-level function, the closure in line [1] has one mosgruction following it (the MOVE),
for the upvaluem. This is similar to the previous example.

Next, compare the level 2 function and the level Zfiom — now there are two upvalues,
andn. Them upvalue is found 2 levels up. In the level 2 function, tbeuwe in line [1] has
two instructions following it. The first is for upvalue nuent® (n) — it uses GETUPVAL to
indicate that the upvalue is one or more level lower ddwe. second is for upvalue number
1 (n) — it uses MOVE which indicate that the upvalue ishe same level as the CLOSURE
instruction. For both of these pseudo-instructions, th&el fs used to point either to the
upvalue or local in question. The Lua virtual machine uses itliormation (CLOSURE
information and upvalue lists) to manage upvalues; for thgrammer, upvalues just works.

-53-

The last instruction to be covered in this guide, CLOSIB, @dsls with upvalues:

CLOSE A close all variables in the stack up to (>=) R(A)

Closes all local variables in the stack from register R(A) onwards. This
instruction is only generated if there is an upvalue present within those
local variables. It has no effect if a local isn’t used as an upvalue.

If a local is used as an upvalue, then the local variable need to be placed
somewhere, otherwise it will go out of scope and disappear when a lexical
block enclosing the local variable ends. CLOSE performs this operation for
all affected local variables for do end blocks or loop blocks. RETURN also
does an implicit CLOSE when a function returns.

It is easier to understand CLOSE with an example:

>do \

>> Jocal p,qg\

>> r = function() return p,q end \
>>end

; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks

function 0023

Jocal "p" ;0
Jocal "g" ;1
.const "r" ;0

; function [0] definition (level 2)

; 2 upvalues, 0 params, 2 stacks
function 2002

.upvalue "p" ;0

.upvalue "g" ;1

[1] getupval O O P

[2] getupval 1 1 i q
[8]return 0 3

[4return 0 1

; end of function

[1] closure 2 O ; 2 upvalues
[2] move 00
[3] move 01
[4] setglobal 2 0O
[5]close O

[6] return O 1

; end of function

p andq are local to thelo end block, and they are upvalues as well. The glokalassigned

an anonymous function that hasndq as upvalues. Whemandq go out of scope at the end
of thedo end block, both variables have to be put somewhere bedhageare part of the
environment of the function instantiatedrinThis is where the CLOSE instruction comes in.

In the top-level function, the CLOSE in line [5] makée virtual machine find all affected
locals (they have to be open upvalues,) take them otlneaftack, and place them in a safe
place so that they do not disappear when the block otidumgoes out of scope. A RETURN
instruction does an implicit CLOSE so the latter wopp@ar very often in listings.

-54-

Here is another example which illustrates a rathetlesygmint with CLOSE (thanks to Rici
Lake for this nugget):

>do \

>> Jocal p\

>> while true do \

>> g = function() return p end \
>> break \

>> end \

>>end

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0022

Jocal "p" ;0

.const "q" ;0

; function [0] definition (level 2)

; 1 upvalues, 0 params, 2 stacks
function 1002

.upvalue "p" ;0

[1] getupval 0 O P

[2] return O 2

[B]return 0 1

; end of function

1] closure 1 0 ; 1 upvalues
2] move 00

3] setglobal 1 0 i q

4] jmp 1 ; to [6]

5] jmp -5 ;to [1]
6]close O

7lreturn 0 1

: end of function

In the above example, a function is instantiated withiaop. In real-world code, a loop may
instantiate a number of such functions. Each of thasetibns will have its owip upvalue.
The subtle point is that thiereak (the JMP on line [4]) does not jump to the RETURN
instruction in line [7]; instead it reaches the CLOSS&trnction on line [6]. Whether or not
execution exits a loop normally or throughbeeak, the code within the loop may have
caused the instantiation of one or more functions thed associated upvalues. Thus the
enclosingdo end block must execute its CLOSE instruction; if we alwagmember to
associate the CLOSE with tde end block, there will be no confusion.

CLOSE also appears whéor loops are used in the same manner. When using loop indices
or loop iterators as upvalues to instantiate functi@ash instantiation will have its own
unique upvalue. This is the expected behaviour in Lua S0bjif indices or iterators are to be
considered as locals to the loop body. Previously, Lu@ 8dnhsiders loop indices or iterators

to be local to a block enclosing the entire loop, mstiantiation of multiple functions only
results in a single upvalue shared between the turtiPlease see the section on loop
instructions for sample code that illustrates this behavi

-55-

15 Comparing Lua 5.0.2 and Lua 5.1

The following is list of changes to the Lua virtual maehinstructions from version 5.0.2 to
version 5.1. This list ision-exhaustive, only changes noted during the writing of this guide
are listed. For the details, please read the relesestions. If you are not familiar with Lua
5.0.2 virtual machine instructions, please read the oldeblua version of this guide.

Number of opcodes increased from 35 to 38.

Operand fields rearranged, from A|B|C|Opcode to B|C|A|Op&dand sBx fields
rearranged in the same way as well.

Maximum number of parameters per function is no longatdd to 100. It is now
limited by the maximum number of locals per function, \whg 200.

Maximum number of upvalues per function increased to 60. Sbthese limits have
their names changed.

Opcodes renamed: TEST has been renamed to TESTSET

Opcodes deleted: TFORPREP, SETLISTO

Opcodes added: MOD, LEN, TEST, VARARG, FORPREP

Also, some opcodes’ functionality have been changedntliheerical values of some
opcodes have changed as well.

Major changes to the binary chunk header. It now hasd §ize and the loader no
longer accepts chunks with a different endianness.

A format version byte has been added.

Operand width bytes have been deleted.

lua_Number encoding in the header has been simplified.

For a function prototype header, a last line defined has beed.aduris_vararg flag
has changed considerably; it now has 3 fields.

For a function prototype, debug data has been pushed to theleledihe code list
has been brought to the front. The list of constants camlbidA TBOOLEAN.

For RK(B) or RK(C) operands, an MSB flag is used indtefaa biasing number to
differentiate registers and constants.

LOADNILs at the start of a function are now optimizaday.

Limited constant folding is performed for arithmatstructions, namely: ADD, SUB,
MUL, DIV, POW, MOD and UNM.

The MOD instruction is new.

The LEN instruction is new.

The VARARG instruction is new.

What used to be TEST in 5.0.2 is now TESTSET in 5.1.

The TEST instruction is new.

The FORPREP instruction is new.

FORLOOP behaviour has changed.

The semantics of the loop index for FORLOOP has changed.

TFORLOOP behaviour has changed.

TFORPREP has been deleted. Lua 5.1 no longer supports old-stglecdeops.
The semantics of loop iterators for TFORLOOP has gbdn

The limit to the complexity ofvhile conditions has been removed.

The encoding of sizes for NEWTABLE has changed.

SETLIST behaviour has changed.

SETLISTO has been deleted. Its functionality has been mhénge SETLIST.

-56-

16 Digging Deeper

For studying larger snippets of Lua code and its disassegthlycan try ChunkSpy’s various
disassembly functions. Both vmmerge5 and ChunkSpy can nsergee code lines into a
disassembly listing. ChunkSpy can provide more detadale it processes every bit of a
binary chunk.

A good way of studying how any instruction functions is td fimhere its opcode appears in
the Lua sources. For example, to see what MOVE doesfdod®P_MOVE inlparser.c

(the parser)icode.c (the code generator) ahdn.c (the virtual machine.) From the code
implementing OP_MOVE, you can then move deeper intoctite by following function
calls. | found this approach (bottoms up, following thescmition path from generated
opcodes to the functions that performs code generasoal)little easier than following the
recursive descent parser’s call graph. Once you hav@idittle pictures, the big picture will
form on its own.

| hope you have enjoyed, as | did, poking your way thratghinternal organs of this Lua
thingy. Now that the Lua internals seem less magicdlraare practical, | look forward to
some Dr Frankenstein experiments with my newfound knowledge.

17 Acknowledgements
The author gratefully acknowledges valuable feedback from Rici Lake and Klaas-Jan Sol.

18 ChangelLog & ToDos

Older changes can be found in the Lua 5.0.2 version of this éotum
Changes:

20060313 Initial public release, adapted from the Lua 5.0.2 versfdheodocument.
Thanks to Rici Lake for info about the semantic$onfloops in Lua 5.1.

-57-

	Contents
	1 Introduction
	2 Lua Instruction Basics
	3 Really Simple Chunks
	4 Lua Binary Chunks
	5 Instruction Notation
	6 Loading Constants
	7 Upvalues and Globals
	8 Table Instructions
	9 Arithmetic and String Instructions
	10 Jumps and Calls
	11 Relational and Logic Instructions
	12 Loop Instructions
	13 Table Creation
	14 Closures and Closing
	15 Comparing Lua5.0.2 and Lua5.1
	16 Digging Deeper
	17 Acknowledgements
	18 ChangeLog & ToDos

