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1  Introduction
This is a no-frills introduction to the instruction set of the Lua 5.1 virtual machine. Compared
to Perl or Python,  the compactness of Lua makes it  relatively easier for someone to peek
under  the hood and  understand  its  internals.  I  think  that one  cannot  completely  grok a
scripting language, or any complex system for that matter, without slitting the animal open
and examining  the entrails,  organs and other yucky stuff that isn’t  normally seen.  So this
document is supposed to help with the “peek under the hood” bit.

This introductory guide covers Lua 5.1 only. Please see the older document for the guide to
Lua 5.0.2 virtual machine instructions. This is intentional; the internals of Lua is not fixed or
standardized in any way, so users must not expect compatibility from one version of Lua to
another as far as internals are concerned.

Output from ChunkSpy (URL: http://luaforge.net/projects/chunkspy/ ), a Lua 5
binary chunk disassembler which I wrote while studying Lua internals, was used to generate
the examples  shown in  this  document.  The brief  disassembly mode of ChunkSpy is  very
similar to the output of the listing mode of luac , so you do not need to learn a new listing
syntax. ChunkSpy can be downloaded from LuaForge (URL: http://luaforge.net/ ); it
is licensed under the same type of MIT-style license as Lua 5 itself.

ChunkSpy has an interactive  mode: you can enter  a source chunk  and get  an immediate
disassembly. This allows you to use this document as a tutorial by entering the examples into
ChunkSpy and seeing the results yourself. The interactive mode is also very useful when you
are exploring the behaviour of the Lua code generator on many short code snippets.

This is a quick introduction, so it isn’t intended to be a comprehensive or expert treatment of
the Lua virtual machine (from this point on, “Lua” refers to “Lua 5” unless otherwise stated)
or its instructions. It is intended to be a simple, easy-to-digest beginner’s guide to the Lua
virtual machine instruction set – it won’t do cartwheels or blow smoke rings.

The objective of this introduction is to cover all the Lua virtual machine instructions and the
structure of Lua 5 binary chunks with a minimum of fuss. Then, if you want more detail, you
can use luac  or ChunkSpy to study non-trivial chunks of code, or you can dive into the Lua
source code itself for the real thing.

This is currently a draft, and I am not a Lua internals expert. So feedback is welcome. If you
find any errors, or if you have anything to contribute please send me an e-mail (to khman AT
users.sf.net or mkh AT pl.jaring.my) so that I can correct it. Thanks.
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2  Lua Instruction Basics
The Lua virtual machine instruction set we will look at is a particular implementation of the
Lua language. It is by no means the only way to skin the chicken. The instruction set just
happens to be the way the authors of Lua chose to implement version 5 of Lua. The following
sections are based on the instruction set used in Lua 5.1. The instruction set might change in
the future – do not expect it to be set in stone. This is because the implementation details of
virtual  machines  are  not  a  concern  to  most  users  of  scripting  languages.  For  most
applications, there is no need to specify how bytecode is generated or how the virtual machine
runs,  as long as the language works as advertised.  So remember  that  there is  no  official
specification of the Lua virtual machine instruction set, there is  no need for one; the only
official specification is of the Lua language.

In the course of studying  disassemblies  of Lua binary chunks,  you will  notice that  many
generated instruction  sequences  aren’t  as perfect  as you would  like  them to  be.  This  is
perfectly normal from an engineering standpoint. The canonical Lua implementation is not
meant to be an optimizing bytecode compiler or a JIT compiler. Instead it is supposed to load,
parse and run Lua source code efficiently. It is the totality of the implementation that counts.
If you really need the performance, you are supposed to drop down into native C functions
anyway.

Lua instructions have a fixed size, using a 32 bit  unsigned integer data type by default. In
binary chunks, endianness is significant, but while in memory, an instruction can be portably
decoded or encoded in C using the usual integer shift and mask operations. The details can be
found in lopcodes.h , while the Instruction  type definition is defined in llimits.h .

There are three instruction types and 38 opcodes (numbered 0 through 37) are currently in use
as of Lua 5.1. The instruction types are enumerated as iABC,  iABx,  iAsBx,  and may be
visually represented as follows:

Lua 5 Instruction Formats

Instruction fields are encoded as simple  unsigned integer values, except for sBx. Field sBx
can represent negative numbers, but it doesn’t use 2s complement. Instead, it has a bias equal
to half the maximum integer that can be represented by its unsigned counterpart, Bx. For a
field size of 18 bits, Bx can hold a maximum unsigned integer value of 262143, and so the
bias is 131071 (calculated as 262143 >> 1 ). A value of -1 will be encoded as (-1 + 131071)
or 131070 or 1FFFE in hexadecimal.

Fields A, B and C usually refers to register numbers (I’ll use the term “register” because of its
similarity  to  processor  registers).  Although  field  A  is the  target  operand  in  arithmetic
operations, this rule isn’t always true for other instructions. A register is really an index into
the current stack frame, register 0 being the bottom-of-stack position.
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Unlike the Lua C API, negative indices (counting from the top of stack) are not supported.
For some instructions, where the top of stack may be required, it  is encoded as a special
operand value,  usually 0. Local variables  are equivalent  to certain registers in  the current
stack frame,  while  dedicated opcodes allow read/write of globals  and upvalues.  For some
instructions, a value in fields B or C may be a register or an encoding of the number of a
constant  in  the constant  pool. This  will  be  described further  in the section on instruction
notation.

By default, Lua has a maximum stack frame size of 250. This is encoded as MAXSTACK in
llimits.h . The maximum stack frame size in turn limits the maximum number of locals
per function, which is set at 200, encoded as LUAI_MAXVARS in  luaconf.h . Other limits
found in the same file include the maximum number of upvalues per function (60), encoded
as LUAI_MAXUPVALUES, call depths, the minimum C stack size, etc. Also, with an sBx field
of 18 bits, jumps and control structures cannot exceed a jump distance of about 131071.

A summary of the Lua 5.1 virtual machine instruction set is as follows:

Opcode Name Description
  0 MOVE Copy a value between registers
  1 LOADK Load a constant into a register
  2 LOADBOOL Load a boolean into a register
  3 LOADNIL Load nil values into a range of registers
  4 GETUPVAL Read an upvalue into a register
  5 GETGLOBAL Read a global variable into a register
  6 GETTABLE Read a table element into a register
  7 SETGLOBAL Write a register value into a global variable
  8 SETUPVAL Write a register value into an upvalue
  9 SETTABLE Write a register value into a table element
10 NEWTABLE Create a new table
11 SELF Prepare an object method for calling
12 ADD Addition operator
13 SUB Subtraction operator
14 MUL Multiplication operator
15 DIV Division operator
16 MOD Modulus (remainder) operator
17 POW Exponentiation operator
18 UNM Unary minus operator
19 NOT Logical NOT operator
20 LEN Length operator
21 CONCAT Concatenate a range of registers
22 JMP Unconditional jump
23 EQ Equality test
24 LT Less than test
25 LE Less than or equal to test
26 TEST Boolean test, with conditional jump
27 TESTSET Boolean test, with conditional jump and assignment
28 CALL Call a closure
29 TAILCALL Perform a tail call
30 RETURN Return from function call
31 FORLOOP Iterate a numeric for loop
32 FORPREP Initialization for a numeric for loop
33 TFORLOOP Iterate a generic for loop
34 SETLIST Set a range of array elements for a table
35 CLOSE Close a range of locals being used as upvalues
36 CLOSURE Create a closure of a function prototype
37 VARARG Assign vararg function arguments to registers
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3  Really Simple Chunks
Before heading  into binary chunk and virtual machine instruction details,  this  section will
demonstrate briefly how ChunkSpy can be used to explore Lua 5 code generation. All  the
examples in this document were produced using the Lua 5.1 version of ChunkSpy found in
the ChunkSpy 0.9.8 distribution.

First, start ChunkSpy in interactive mode (user input is set in bold):

$ lua ChunkSpy.lua --interact
ChunkSpy: A Lua 5.1 binary chunk disassembler
Version 0.9.8 (20060307)  Copyright (c) 2004-2006 K ein-Hong Man
The COPYRIGHT file describes the conditions under w hich this
software may be distributed (basically a Lua 5-styl e license.)

Type 'exit' or 'quit' to end the interactive sessio n. 'help' displays
this message. ChunkSpy will attempt to turn anythin g else into a
binary chunk and process it into an assembly-style listing.
A '\' can be used as a line continuation symbol; th is allows multiple
lines to be strung together.

>

We’ll start with the shortest possible binary chunk that can be generated:

>do end
; source chunk: (interactive mode)
; x86 standard (32-bit, little endian, doubles)

; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
[1] return     0   1      
; end of function

ChunkSpy will  treat your keyboard input as a small chunk of Lua source code. The library
function string.dump()  is first used to generate a binary chunk string, then ChunkSpy will
disassemble that string and give you a brief assembly language-style output listing.

Some features of the listing: Comment lines are prefixed by a semicolon. The header portion
of the binary chunk is not displayed with the brief style. Data or header information that isn’t
an instruction is shown as an assembler directive with a dot prefix. luac -style comments are
generated for some instructions, and the instruction location is in square brackets.

A “do end ” generates a single RETURN instruction and does nothing else. There are no
parameters, locals, upvalues or globals. For the rest of the disassembly listings shown in this
document,  we  will  omit  some  common  header  comments  and  show  only  the  function
disassembly part. Instructions will be referenced by its marked position, e.g. line [1]. Here is
another very short chunk:

>return
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
[1] return     0   1      
[2] return     0   1      
; end of function
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A RETURN instruction is generated for every return in the source. The first RETURN (line
[1]) is  generated by the  return  keyword, while  the second RETURN (line  [2]) is  always
added by the code generator. This isn’t a problem, because the second RETURN never gets
executed anyway, and only 4 bytes is  wasted. Perfect generation of RETURN instructions
requires basic block analysis, and it is not done because there is no performance penalty for
an extra RETURN during execution, only a negligible memory penalty.

Notice in these examples, the minimum stack size is 2, even when the stack isn’t used. The
next snippet assigns a constant value of 6 to the global variable a:

>a=6
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.const  "a"  ; 0
.const  6  ; 1
[1] loadk      0   1        ; 6
[2] setglobal  0   0        ; a
[3] return     0   1      
; end of function

All string and number constants are pooled on a per-function basis, and instructions refer to
them using an index value which starts from 0. Global variable names need a constant string
as well, because globals are maintained as a table. Line [1] loads the value 6 (with an index to
the constant pool of 1) into register 0, then line [2] sets the global table with the constant “a”
(constant index 0) as the key and register 0 (holding the number 6) as the value.

If we write the variable as a local, we get:

>local a="hello"
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.const  "hello"  ; 0
[1] loadk      0   0        ; "hello"
[2] return     0   1      
; end of function

Local variables  reside in  the stack,  and they occupy a stack (or register)  location for  the
duration of their existence. The scope of a local variable is specified by a starting program
counter  location  and  an  ending  program counter  location;  this  is  not  shown  in  a  brief
disassembly listing.

The local table in the function tells the user that register 0 is variable  a. This information
doesn’t  matter  to  the  VM,  because  it  needs  to  know  register  numbers  only  –  register
allocation was supposed to have been properly done by the code generator. So LOADK in
line [1] loads constant 0 (the string “hello”) into register 0, which is the local variable  a. A
stripped binary chunk will not have local variable names for debugging.

Some  examples  in  the  following  sections  have  been  further  annotated  with  additional
comments in parentheses. Please note that ChunkSpy will not generate such comments, nor
will  it  indent functions that are at different  nesting levels.  Next  we will  take a look at the
structure of Lua 5.1 binary chunks.
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4  Lua Binary Chunks
Lua can dump functions as binary chunks, which can then be written to a file, loaded and run.
Binary chunks behave exactly like the source code from which they were compiled.

A binary chunk consist  of two parts: a header block and a top-level function. The header
portion contains 12 elements:

Header block of a Lua 5 binary chunk
Default values shown are for a 32-bit little-endian platform with IEEE 754
doubles as the number format. The header size is always 12 bytes.

4 bytes Header signature: ESC, “Lua” or 0x1B4C7561
• Binary chunk is recognized by checking for this signature

1 byte Version number, 0x51 (81 decimal) for Lua 5.1
• High hex digit is major version number
• Low hex digit is minor version number

1 byte Format version, 0=official version
1 byte Endianness flag (default 1)

• 0=big endian, 1=little endian

1 byte Size of int (in bytes) (default 4)
1 byte Size of size_t (in bytes) (default 4)
1 byte Size of Instruction (in bytes) (default 4)
1 byte Size of lua_Number (in bytes) (default 8)
1 byte Integral flag (default 0)

• 0=floating-point, 1=integral number type

On an x86 platform, the default header bytes will be (in hex):
1B4C7561 51000104 04040800

A Lua 5.1 binary chunk header is always 12 bytes in size. Since the characteristics of a Lua
virtual machine is  hard-coded, the Lua undump code checks all  12 of the header bytes to
determine whether the binary chunk is fit for consumption or not. All 12 header bytes of the
binary chunk must  exactly match the header bytes of the platform,  otherwise Lua 5.1 will
refuse to load the chunk. The header is also not affected by endianness; the same code can be
used to load the main header of little-endian or big-endian binary chunks. The data type of
lua_Number  is determined by the size of lua_Number  byte and the integral flag together.

In theory, a Lua binary chunk is portable; in real life, there is no need for the undump code to
support such a feature. If you need undump  to load all  kinds of binary chunks,  you are
probably doing something  wrong. If however you somehow need this feature, you can try
ChunkSpy’s rewrite option, which allows you to convert a binary chunk from one profile to
another.

Anyway, most of the time there is little need to seriously scrutinize the header, because since
Lua source code is usually available, a chunk can be readily compiled into the native binary
chunk format.

-7-



The header block is followed immediately by the top-level function or chunk:

Function block of a Lua 5 binary chunk
Holds all the relevant data for a function. There is one top-level function.

String source name
Integer line defined
Integer last line defined
1 byte number of upvalues
1 byte number of parameters
1 byte is_vararg flag (see explanation further below)

• 1=VARARG_HASARG
• 2=VARARG_ISVARARG
• 4=VARARG_NEEDSARG

1 byte maximum stack size (number of registers used)

List list of instructions (code)
List list of constants
List list of function prototypes
List source line positions (optional debug data)
List list of locals (optional debug data)
List list of upvalues (optional debug data)

A function block in a binary chunk defines the prototype of a function. To actually execute
the function, Lua creates an instance (or closure) of the function first. A function in a binary
chunk consist of a few header elements and a bunch of lists. Debug data can be stripped.

A String is defined in this way:

All strings are defined in the following format:

Size_t String data size
Bytes String data, includes a NUL (ASCII 0) at the end

The string data size takes into consideration a NUL character at the end,
so an empty string (“”) has 1 as the size_t value. A size_t of 0 means zero
string data bytes; the string does not exist. This is often used by the source
name field of a function.

The  source name is  usually the name of the source file  from which the binary chunk is
compiled. It may also refer to a string. This source name is specified only in the top-level
function; in other functions, this field consists only of a Size_t with the value 0.

The  line defined and  last line defined  are  the line  numbers where the function prototype
starts and ends in the source file. For the main chunk, the values of both fields are 0. The next
two fields, the number of upvalues and the number of parameters, are self-explanatory, as
is  the  maximum stack size field.  The  is_vararg field  is  a bit  more complicated,  though.
These are all byte-sized fields.
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The  is_vararg flag  comprise  3  bitfields.  By  default,  Lua  5.1  defines  the  constant
LUA_COMPAT_VARARG, allowing the table  arg  to be used in functions that are defined
with a variable number of parameters (vararg functions.) The table arg itself is not counted in
the number of parameters. For old style code that uses arg, is_vararg is 7. If the code within
the vararg function uses ... instead of arg, then is_vararg is 3 (the VARARG_NEEDSARG
field is 0.) If 5.0.2 compatibility is compiled out, then is_vararg is 2.

To summarize,  the flag  VARARG_ISVARARG (2) is  always set  for  vararg functions.  If
LUA_COMPAT_VARARG is defined, VARARG_HASARG (1) is also set. If ... is not used
within the function, then VARARG_NEEDSARG (4) is set. A normal function always has an
is_vararg flag value of 0, while the main chunk always has an is_vararg flag value of 2.

After the function header elements comes a number of lists that store the information that
makes up the body of the function.  Each list  starts with an  Integer  as a list  size  count,
followed by a number of list elements. Each list has its own element format. A list size of 0
has no list elements at all.

In the following boxes, a data type in square brackets, e.g.  [Integer] means that there are
multiple numbers of the element, in this case an integer. The count is given by the list  size.
Names in parentheses are the ones given in the Lua sources; they are data structure fields.

The first  list  is  the instruction list,  or the actual code to the function.  This  is  the list  of
instructions that will actually be executed:

Instruction list
Holds list of instructions that will be executed.

Integer size of code (sizecode)
[Instruction] virtual machine instructions

The format of the virtual machine  instructions was given in the last  chapter. A RETURN
instruction is always generated by the code generator, so the size of the instruction list should
be at least 1. Next is the list of constants:

Constant list
Holds list of constants referenced in the function (it’s a constant pool.)

Integer size of constant list (sizek)
[
    1 byte type of constant (value in parentheses):

• 0=LUA_TNIL, 1=LUA_TBOOLEAN,
• 3=LUA_TNUMBER, 4=LUA_TSTRING

    Const the constant itself: this field does not exist if the constant 
type is 0; it is 0 or 1 for type 1; it is a Number for type 3,
or a String for type 4.

]
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Number is the Lua number data type, normally an IEEE 754 64-bit double.  Integer, Size_t
and  Number  are all  endian-sensitive;  Lua 5.1 will  not load a chunk whose endianness is
different  from that  of the platform.  Their  sizes and formats are of course specified  in  the
binary chunk header. The data type of Number is determined by its size byte and the integral
flag. Boolean values are encoded as either 0 or 1.

The function prototype list comes after the constant list:

Function prototype list
Holds function prototypes defined within the function.

Integer size of function prototypes (sizep)
[Functions] function prototype data, or function blocks

Function prototypes or function blocks have the exact same format as the top-level function
or chunk.  However,  function prototypes that  isn’t  the top-level function do  not  have the
source name field defined. In this way, function prototypes at different lexical scoping levels
are defined and nested. In a complex binary chunk, the nesting may be several levels deep. A
closure will refer to a function by its number in the list.

The lists following the list  of prototypes are optional. They contain debug information and
can be stripped to save space. First comes the source line position list:

Source line position list
Holds the source line number for each corresponding instruction in a
function. This information is used by error handlers or debuggers. In a
stripped binary, the size of this list is zero. The execution of a function does
not depend on this list.

Integer size of source line position list (sizelineinfo)
[Integer] list index corresponds to instruction position; the integer

value is the line number of the Lua source where the
instruction was generated

Next up is the local list. Each local variable entry has 3 fields, a string and two integers:

Local list
Holds list of local variable names and the program counter range in which
the local variable is active.

Integer size of local list (sizelocvars)
[
    String name of local variable (varname)
    Integer start of local variable scope (startpc)
    Integer end of local variable scope (endpc)
]
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The final list is the upvalue list:

Upvalue list
Holds list of upvalue names.

Integer size of upvalue list (sizeupvalues)
[String] name of upvalue

All the lists are not shared or re-used: Locals, upvalues, constants and prototypes referenced
in the code must be specified in the respective lists in the same function. In addition, locals,
upvalues, constants and the function prototypes are indexed using numbers starting from 0. In
disassembly listings,  both the source line  position list and the instruction list  are indexed
starting from 1. Note that the latter is by convention only; the indices does not matter to the
virtual  machine  itself,  since  all  jump-related  instructions use  only  signed  displacements.
However,  for  debug information,  the  scope of local  variables  is  encoded using  absolute
program counter positions, and these positions are based on a starting index of 1. This is also
consistent with the output listing from luac .

How does it  all fit  in?  You can easily generate a detailed binary chunk disassembly using
ChunkSpy. Enter the following short bit of code and name the file simple.lua :

local a = 8
function b(c) d = a + c end

Next, run ChunkSpy from the command line to generate the listing:

$ lua ChunkSpy.lua --source simple.lua > simple.lst

The following is a description of the generated listing (simple.lst ), split into segments.

Pos   Hex Data           Description or Code
--------------------------------------------------- ---------------------
0000                     ** source chunk: simple.lu a
                         ** global header start **
0000  1B4C7561           header signature: "\27Lua"
0004  51                 version (major:minor hex d igits)
0005  00                 format (0=official)
0006  01                 endianness (1=little endia n)
0007  04                 size of int (bytes)
0008  04                 size of size_t (bytes)
0009  04                 size of Instruction (bytes )
000A  08                 size of number (bytes)
000B  00                 integral (1=integral)
                         * number type: double
                         * x86 standard (32-bit, li ttle endian, doubles)
                         ** global header end **

This  is  an example  of a binary chunk  header.  ChunkSpy calls  this  the  global  header  to
differentiate it from a function header. For binary chunks specific to a certain platform, it is
easy  to  match  the  entire  header  at  one  go  instead  of  testing  each  field.  As  described
previously,  the  header is  12  bytes in  size,  and needs  to  be  exactly  compatible  with the
platform or else Lua 5.1 won’t load the binary chunk.
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The global header is followed by the function header of the top-level function:

000C                     ** function [0] definition  (level 1)
                         ** start of function **
000C  0B000000           string size (11)
0010  73696D706C652E6C+  "simple.l"
0018  756100             "ua\0"
                         source name: simple.lua
001B  00000000           line defined (0)
001F  00000000           last line defined (0)
0023  00                 nups (0)
0024  00                 numparams (0)
0025  02                 is_vararg (2)
0026  02                 maxstacksize (2)

A function’s header is always variable  in size, due to the source name string. The source
name is only present in the top-level function. A top-level chunk does not have a line number
on which  it  is  defined,  so  both the line  defined  fields  are  0.  There  are  no  upvalues  or
parameters. A top-level chunk can always take a variable number of parameters; is_vararg is
always 2 for the top-level  chunk. The stack size is  set at the minimum of 2 for this  very
simple chunk.

Next we come to the various lists, starting with the code listing of the main chunk:

                         * code:
0027  05000000           sizecode (5)
002B  01000000           [1] loadk      0   0        ; 8
002F  64000000           [2] closure    1   0        ; 1 upvalues
0033  00000000           [3] move       0   0      
0037  47400000           [4] setglobal  1   1        ; b
003B  1E008000           [5] return     0   1      

The first line of the source code compiles to a single instruction, line [1]. Local a is register 0
and the number 8 is constant 0. In line [2], an instance of function prototype 0 is created, and
the closure is temporarily placed in register 1. The MOVE instruction in line [3] is actually
used by the CLOSURE instruction to manage the upvalue  a; it  is not really executed. This
will be explained in detail in Chapter 14. The closure is then placed into the global b in line
[4]; “b” is constant 1 while the closure is in register 1. Line [5] returns control to the calling
function. In this case, it exits the chunk.

The list of constants follow the instructions:

                         * constants:
003F  02000000           sizek (2)
0043  03                 const type 3
0044  0000000000002040   const [0]: (8)
004C  04                 const type 4
004D  02000000           string size (2)
0051  6200               "b\0"
                         const [1]: "b"

The top-level function requires two constants, the number 8 (which is used in the assignment
on line 1) and the string “b” (which is used to refer to the global variable b on line 2.)

This is followed by the function prototype list of the main chunk. On line 2 of the source, a
function prototype was declared within the main chunk. This function is instantiated and the
closure is assigned to global b.
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The function prototype list  holds  all  the relevant  information,  a  function  block  within  a
function block. ChunkSpy reports it as function prototype number 0, at level 2. Level 1 is the
top-level function; there is only one level 1 function, but there may be more than one function
prototype at other levels.

                         * functions:
0053  01000000           sizep (1)
                         
0057                     ** function [0] definition  (level 2)
                         ** start of function **
0057  00000000           string size (0)
                         source name: (none)
005B  02000000           line defined (2)
005F  02000000           last line defined (2)
0063  01                 nups (1)
0064  01                 numparams (1)
0065  00                 is_vararg (0)
0066  02                 maxstacksize (2)
                         * code:
0067  04000000           sizecode (4)
006B  44000000           [1] getupval   1   0        ; a
006F  4C008000           [2] add        1   1   0  
0073  47000000           [3] setglobal  1   0        ; d
0077  1E008000           [4] return     0   1

Above is the first section of function b’s prototype. It has no name string; it is defined on line
2 (both values point  to line  2); there is one upvalue; there is one parameter,  c; it  is  not a
vararg function; and its maximum stack size is 2. Parameters are located from the bottom of
the stack, so the single parameter c of the function is at register 0.

The prototype has 4 instructions. Most Lua virtual machine instructions are easy to decipher,
but  some  of them have  details  that  are  not  immediately evident.  This  example  however
should be quite easy to understand. In line [1], 0 is the upvalue a and 1 is the target register,
which is a temporary register. Line [2] is the addition operation, with register 1 holding the
temporary result  while  register 0 is the function parameter  c. In line  [3], the global  d (so
named by constant 0) is set, and in the next line, control is returned to the caller.

                         * constants:
007B  01000000           sizek (1)
007F  04                 const type 4
0080  02000000           string size (2)
0084  6400               "d\0"
                         const [0]: "d"
                         * functions:
0086  00000000           sizep (0)

The constant list  for the function has one entry, the string “d” is used to look up the global
variable of that name. This is followed by the source line position list:

                         * lines:
008A  04000000           sizelineinfo (4)
                         [pc] (line)
008E  02000000           [1] (2)
0092  02000000           [2] (2)
0096  02000000           [3] (2)
009A  02000000           [4] (2)

All four instructions that were generated came from line 2 of the source code.
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The last two lists of the function prototype are the local list and the upvalue list:

                         * locals:
009E  01000000           sizelocvars (1)
00A2  02000000           string size (2)
00A6  6300               "c\0"
                         local [0]: c
00A8  00000000             startpc (0)
00AC  03000000             endpc   (3)
                         * upvalues:
00B0  01000000           sizeupvalues (1)
00B4  02000000           string size (2)
00B8  6100               "a\0"
                         upvalue [0]: a
                         ** end of function **

There is one local variable, which is parameter  c. For parameters, the startpc  value is 0.
Normal locals that are defined within a function have a startpc  value of 1. There is also an
upvalue, a, which refers to the local a in the parent (top) function.

After the end of the function prototype data for function b, the chunk resumes with the debug
information for the top-level chunk:

                         * lines:
00BA  05000000           sizelineinfo (5)
                         [pc] (line)
00BE  01000000           [1] (1)
00C2  02000000           [2] (2)
00C6  02000000           [3] (2)
00CA  02000000           [4] (2)
00CE  02000000           [5] (2)
                         * locals:
00D2  01000000           sizelocvars (1)
00D6  02000000           string size (2)
00DA  6100               "a\0"
                         local [0]: a
00DC  01000000             startpc (1)
00E0  04000000             endpc   (4)
                         * upvalues:
00E4  00000000           sizeupvalues (0)
                         ** end of function **

00E8                     ** end of chunk **

From the source line list, we can see that there are 5 instructions in the top-level function. The
first instruction came from line 1 of the source, while the other 4 instructions came from line
2 of the source.

The  top-level  function  has  one  local  variable,  named  “a”,  active  from program counter
location 1 to location 4, and it refers to register 0. There are no upvalues, so the size of that
table is 0. The binary chunk ends after the debug information of the main chunk is listed.

Now that we’ve seen a binary chunk in detail, we will proceed to look at each Lua 5.1 virtual
machine instruction.
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5  Instruction Notation
Before looking at some Lua virtual machine instructions, here is a little something about the
notation used for describing instructions. Instruction descriptions are given as comments in
the  Lua  source  file  lopcodes.h .  The  instruction  descriptions  are  reproduced  in  the
following chapters, with additional explanatory notes. Here are some basic symbols:

R(A) Register A (specified in instruction field A)
R(B) Register B (specified in instruction field B)
R(C) Register C (specified in instruction field C)
PC Program Counter
Kst(n) Element n in the constant list
Upvalue[n] Name of upvalue with index n
Gbl[sym] Global variable indexed by symbol sym
RK(B) Register B or a constant index
RK(C) Register C or a constant index
sBx Signed displacement (in field sBx) for all kinds of jumps

The notation used to describe instructions is a little like pseudo-C. The operators used in the
notation  are  largely  C  operators,  while  conditional  statements  use  C-style  evaluation.
Booleans are evaluated C-style. Thus, the notation is a loose translation of the actual C code
that implements an instruction.

The  operation  of  some  instructions  cannot  be  clearly  described  by  one or  two lines  of
notation. Hence, this guide will  supplement symbolic notation with detailed descriptions of
the operation of each instruction. Having described an instruction, examples will be given to
show the instruction working in a short snippet of Lua code. Using ChunkSpy’s interactive
mode,  you  can  try out  the  examples  yourself  and  get  instant  feedback  in  the  form of
disassembled  code.  If  you  want  a  disassembled  listing  plus  the byte  values  of data and
instructions, you can use ChunkSpy to generate a normal, verbose, disassembly listing.

The program counter of the virtual machine (PC) always points to the next instruction. This
behaviour is standard for most microprocessors. The rule is that once an instruction is read in
to be executed, the program counter is immediately updated. So, to skip a single instruction
following the current instruction, add 1 (the displacement) to the PC. A displacement of -1
will theoretically cause a JMP instruction to jump back onto itself,  causing an infinite loop.
Luckily, the code generator is not supposed to be able to make up stuff like that.

As previously explained,  registers  and local  variables  are roughly  equivalent.  Temporary
results are always held in registers. Instruction fields B and C can point to a constant instead
of a register for some instructions, this is when the field value has its MSB (most significant
bit) set. For example, a field B value of 256 will point to the constant at index 0, if the field is
9 bits wide. For most instructions, field A is the target register. Disassembly listings preserve
the A, B, C operand field order for consistency.
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6  Loading Constants
Loads and  moves  are the starting  point  of pretty much  all  processor  or  virtual  machine
instruction sets, so we’ll start with primitive loads and moves:

MOVE A  B R(A) := R(B)

Copies the value of register R(B) into register R(A). If R(B) holds a table,
function or userdata, then the reference to that object is copied. MOVE is
often used for moving values into place for the next operation.

The opcode for MOVE has a second purpose – it is also used in creating
closures, always appearing after the CLOSURE instruction; see CLOSURE
for more information.

The most straightforward use of MOVE is for assigning a local to another local:

>local a,b = 10; b = a
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.local  "b"  ; 1
.const  10  ; 0
[1] loadk      0   0        ; 10
[2] loadnil    1   1      
[3] move       1   0      
[4] return     0   1      
; end of function

Line [3] assigns (copies) the value in local a (register 0) to local b (register 1).

You won’t  see  MOVE  instructions  used  in  arithmetic  expressions  because  they are  not
needed by arithmetic  operators. All  arithmetic  operators are in 2- or 3-operand style:  the
entire local stack frame is already visible to operands R(A), R(B) and R(C) so there is no need
for any extra MOVE instructions.

Other places where you will see MOVE are:• When moving parameters into place for a function call.• When moving values into place for certain instructions where stack order is important, e.g.
GETTABLE, SETTABLE and CONCAT.• When copying return values into locals after a function call.• After CLOSURE instructions (discussed in Chapter 14.)

There  are  3  fundamental  instructions  for  loading  constants  into  local  variables.  Other
instructions,  for  reading  and  writing  globals,  upvalues  and  tables  are  discussed  in  the
following chapters. The first constant loading instruction is LOADNIL:

LOADNIL A B R(A) := ... := R(B) := nil

Sets a range of registers from R(A) to R(B) to nil. If a single register is to
be assigned to, then R(A) = R(B). When two or more consecutive locals
need to be assigned nil values, only a single LOADNIL is needed.
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LOADNIL uses the operands A and B to mean a range of register locations. The example for
MOVE in the last page shows LOADNIL used to set a single register to nil.

>local a,b,c,d,e = nil,nil,0
; function [0] definition (level 1)
; 0 upvalues, 0 params, 5 stacks
.function  0 0 2 5
.local  "a"  ; 0
.local  "b"  ; 1
.local  "c"  ; 2
.local  "d"  ; 3
.local  "e"  ; 4
.const  0  ; 0
[1] loadk      2   0        ; 0
[2] loadnil    3   4      
[3] return     0   1      
; end of function

Line [2] nils locals d and e. A LOADNIL instruction is not needed for locals a and b because
the instruction has been optimized away. Local c is explicitly initialized with the value 0. The
LOADNIL for locals a and b can be optimized away as the Lua virtual machine always sets
all locals to  nil  prior to executing a function. The optimization rule is a simple  one: If no
other  instructions  have  been generated,  then a LOADNIL as the first  instruction can be
optimized away.

In the example, although the LOADNIL on line [2] is redundant, it is still generated as there
is already an instruction that is not LOADNIL on line [1]. Ideally, one should put all locals
that are initialized to nil at the top of the function, before anything else. In the above case, we
can rearrange the locals to take advantage of the optimization rule:

>local a,b,d,e local c=0
; function [0] definition (level 1)
; 0 upvalues, 0 params, 5 stacks
.function  0 0 2 5
.local  "a"  ; 0
.local  "b"  ; 1
.local  "d"  ; 2
.local  "e"  ; 3
.local  "c"  ; 4
.const  0  ; 0
[1] loadk      4   0        ; 0
[2] return     0   1      
; end of function

Now, we save one LOADNIL instruction. In other parts of a function, an explicit assignment
of nil to a local variable will of course require a LOADNIL instruction.

LOADK A Bx R(A) := Kst(Bx)

Loads constant number Bx into register R(A). Constants are usually
numbers or strings. Each function has its own constant list, or pool.

LOADK loads a constant from the constant list into a register or local. Constants are indexed
starting from 0. Some instructions, such as arithmetic instructions, can use the constant list
without needing a LOADK. Constants are pooled in the list,  duplicates are eliminated. The
list can hold nils, booleans, numbers or strings.
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>local a,b,c,d = 3,"foo",3,"foo"
; function [0] definition (level 1)
; 0 upvalues, 0 params, 4 stacks
.function  0 0 2 4
.local  "a"  ; 0
.local  "b"  ; 1
.local  "c"  ; 2
.local  "d"  ; 3
.const  3  ; 0
.const  "foo"  ; 1
[1] loadk      0   0        ; 3
[2] loadk      1   1        ; "foo"
[3] loadk      2   0        ; 3
[4] loadk      3   1        ; "foo"
[5] return     0   1      
; end of function

The constant 3 and the constant “foo” are both written twice in the source snippet, but in the
constant  list,  each constant  has a single  location. The constant  list  contains  the names  of
global variables as well, since GETGLOBAL and SETGLOBAL makes an implied LOADK
operation in order to get the name string of a global variable first before looking it up in the
global table.

The final constant-loading instruction is LOADBOOL, for setting a boolean value, and it has
some additional functionality.

LOADBOOL A B C R(A) := (Bool)B; if (C) PC++

Loads a boolean value (true or false) into register R(A). true is usually
encoded as an integer 1, false is always 0. If C is non-zero, then the next
instruction is skipped (this is used when you have an assignment
statement where the expression uses relational operators, e.g. M = K>5.)

You can use any non-zero value for the boolean true in field B, but since
you cannot use booleans as numbers in Lua, it’s best to stick to 1 for true.

LOADBOOL is  used for  loading  a boolean value  into  a register.  It’s also  used where a
boolean result is supposed to be generated, because relational test instructions, for example,
do not generate boolean results – they perform conditional jumps instead. The operand C is
used to optionally skip the next instruction (by incrementing PC by 1) in order to support such
code. For simple assignments of boolean values, C is always 0.

>local a,b = true,false
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.local  "b"  ; 1
[1] loadbool   0   1   0    ; true
[2] loadbool   1   0   0    ; false
[3] return     0   1      
; end of function

This example is straightforward: Line [1] assigns  true  to local  a  (register 0) while line [2]
assigns false to local b (register 1). In both cases, field C is 0, so PC is not incremented and
the next instruction is not skipped.
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>local a = 5 > 2
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.const  5  ; 0
.const  2  ; 1
[1] lt         1   257 256  ; 2 5, to [3] if false
[2] jmp        1            ; to [4]
[3] loadbool   0   0   1    ; false, to [5]
[4] loadbool   0   1   0    ; true
[5] return     0   1      
; end of function

This is an example of an expression that gives a boolean result and is assigned to a variable.
Notice that Lua does not optimize the expression into a true value; Lua 5.1 does not perform
compile-time constant evaluation for relational operations, but it can perform simple constant
evaluation for arithmetic operations.

Since the relational operator LT (which will be covered in greater detail later) does not give a
boolean result but performs a conditional jump, LOADBOOL uses its C operand to perform
an unconditional jump in line [3] – this saves one instruction and makes things a little tidier.
The reason for  all  this  is  that  the instruction set  is  simply optimized for  if...then blocks.
Essentially, local a = 5 > 2  is executed in the following way:

local a
if 2 < 5 then
  a = true
else
  a = false
end

In the disassembly listing, when LT tests 2 < 5, it  evaluates to  true  and doesn’t perform a
conditional  jump.  Line  [2]  jumps  over  the false  result  path,  and in  line  [4],  the local  a
(register 0) is  assigned the boolean  true  by the instruction LOADBOOL. If 2 and 5 were
reversed, line [3] will be followed instead, setting a false, and then the true result path (line
[4]) will be skipped, since LOADBOOL has its field C set to non-zero.

So the true result path goes like this (additional comments in parentheses):

[1] lt         1   257 256  ; 2 5, to [3] if false (if 2 < 5)
[2] jmp        1            ; to [4]
[4] loadbool   0   1   0    ; true                 (a = true)
[5] return     0   1      

and the false result path (which never executes in this example) goes like this:

[1] lt         1   257 256  ; 2 5, to [3] if false (if 2 < 5)
[3] loadbool   0   0   1    ; false, to [5]        (a = false)
[5] return     0   1      

The  true  result  path  looks  longer,  but  it  isn’t,  due  to  the  way the  virtual  machine  is
implemented. This will be discussed further in the section on relational and logic instructions.
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7  Upvalues and Globals
When the Lua virtual machine needs an upvalue or a global, there are dedicated instructions
to load the value into a register. Similarly, when an upvalue or a global needs to be written to,
dedicated instructions are used.

GETGLOBAL A Bx R(A) := Gbl[Kst(Bx)]

Copies the value of the global variable whose name is given in constant
number Bx into register R(A). The name constant must be a string.

SETGLOBAL A Bx Gbl[Kst(Bx)] := R(A)

Copies the value from register R(A) into the global variable whose name is
given in constant number Bx. The name constant must be a string.

The GETGLOBAL and SETGLOBAL instructions are very straightforward and easy to use.
The instructions require that the global variable name be a constant, indexed by instruction
field Bx. R(A) is either the source or target register. The names of the global variables used
by a function will be part of the constant list of the function.

>a = 40; local b = a
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "b"  ; 0
.const  "a"  ; 0
.const  40  ; 1
[1] loadk      0   1        ; 40
[2] setglobal  0   0        ; a
[3] getglobal  0   0        ; a
[4] return     0   1      
; end of function

From the example, you can see that “b” is the name of the local variable while “a” is the name
of  the  global  variable.  Line  [1]  loads  the  number  40  into  register  0  (functioning  as  a
temporary register, since local b hasn’t been defined.) Line [2] assigns the value in register 0
to the global  variable  with name  “a” (constant  0).  By line  [3],  local  b is  defined and is
assigned the value of global a.

GETUPVAL A B R(A) := UpValue[B]

Copies the value in upvalue number B into register R(A). Each function
may have its own upvalue list. This upvalue list is internal to the virtual
machine; the list of upvalue name strings in a prototype is not mandatory.

The opcode for GETUPVAL has a second purpose – it is also used in
creating closures, always appearing after the CLOSURE instruction; see
CLOSURE for more information.

SETUPVAL A B UpValue[B] := R(A)

Copies the value from register R(A) into the upvalue number B in the
upvalue list for that function.
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GETUPVAL and SETUPVAL uses internally-managed upvalue lists.  The list  of upvalue
name strings that are found in a function prototype is for debugging purposes; it is not used by
the Lua virtual machine and can be stripped by luac .

During execution, upvalues are set up by a CLOSURE, and maintained by the Lua virtual
machine.  In the following  example,  function  b is  declared  inside  the main  chunk,  and is
shown  in  the  disassembly  as  a  function  prototype  within  a  function  prototype.  The
indentation, which is not in the original output, helps to visually separate the two functions.

>local a; function b() a = 1 return a end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.const  "b"  ; 0

  ; function [0] definition (level 2)
  ; 1 upvalues, 0 params, 2 stacks
  .function  1 0 0 2
  .upvalue  "a"  ; 0
  .const  1  ; 0
  [1] loadk      0   0        ; 1
  [2] setupval   0   0        ; a
  [3] getupval   0   0        ; a
  [4] return     0   2      
  [5] return     0   1      
  ; end of function

[1] closure    1   0        ; 1 upvalues
[2] move       0   0      
[3] setglobal  1   0        ; b
[4] return     0   1      
; end of function

In the main chunk (function 0, level 1), local a starts as a nil. The CLOSURE in line [1] then
instantiates function prototype 0 (function 0, level 2) with a single upvalue, a. Line [2] is part
of the closure, it  links local  a in the current scope to upvalue  a in the closure. Finally the
closure is assigned to global b.

In function b, there is a single upvalue, a. In Pascal, a variable in an outer scope is found by
traversing stack frames. However, instantiations of Lua functions are first-class values, and
they may be assigned to a variable and referenced elsewhere. Moreover, a single prototype
may have multiple instantiations. Managing upvalues thus becomes a little more tricky than
traversing  stack frames in  Pascal.  The Lua virtual machine solution is  to provide a clean
interface to access upvalues via  GETUPVAL and SETUPVAL, while  the management  of
upvalues is handled by the virtual machine itself.

Line [2] in function  b sets upvalue a (upvalue number 0 in the upvalue table)  to a number
value of 1 (held in temporary register 0.) In line [3], the value in upvalue a is retrieved and
placed into register 0, where the following RETURN instruction will use it as a return value.
The RETURN in line [5] is unused.
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8  Table Instructions
Accessing table elements is a little more complex than accessing upvalues and globals:

GETTABLE A B C R(A) := R(B)[RK(C)]

Copies the value from a table element into register R(A). The table is
referenced by register R(B), while the index to the table is given by RK(C),
which may be the value of register R(C) or a constant number.

SETTABLE A B C R(A)[RK(B)] := RK(C)

Copies the value from register R(C) or a constant into a table element. The
table is referenced by register R(A), while the index to the table is given by
RK(B), which may be the value of register R(B) or a constant number.

All  3 operand fields  are used, and some of the operands can be constants. A constant  is
specified by setting the MSB of the operand to 1. If RK(C) need to refer to constant 1, the
encoded value will  be  (256 | 1) or 257, where 256 is  the value of bit  8 of the operand.
Allowing constants to be used directly reduces considerably the need for temporary registers.

>local p = {}; p[1] = "foo"; return p["bar"]
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "p"  ; 0
.const  1  ; 0
.const  "foo"  ; 1
.const  "bar"  ; 2
[1] newtable   0   0   0    ; array=0, hash=0
[2] settable   0   256 257  ; 1 "foo"
[3] gettable   1   0   258  ; "bar"
[4] return     1   2      
[5] return     0   1      
; end of function

In line  [1],  a new empty table is  created and the reference placed in local  p (register 0).
Creating and populating new tables is a little involved so it will only be discussed later.

Table index 1 is set to “foo” in line [2] by the SETTABLE instruction. Both the index and the
value for the table element are encoded constant numbers; 256 is constant 0 (the number 1)
while 257 is constant 1 (the string “foo”.) The R(A) value of 0 points to the new table that
was defined in line [1].

In line [3], the value of the table element indexed by the string “bar” is copied into temporary
register 1, which is then used by RETURN as a return value. 258 is constant 2 (the string
“bar”) while 0 in field B is the reference to the table.

RK(B) and RK(C) type operands are also used in virtual machine instructions that implement
binary arithmetic operators and relational operators.
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9  Arithmetic and String Instructions
The  Lua virtual  machine’s  set  of  arithmetic  instructions  looks like  3-operand arithmetic
instructions on an RISC processor. 3-operand instructions allow arithmetic expressions to be
translated into machine instructions pretty efficiently.

ADD A B C R(A) := RK(B) + RK(C)
SUB A B C R(A) := RK(B) – RK(C)
MUL A B C R(A) := RK(B) * RK(C)
DIV A B C R(A) := RK(B) / RK(C)
MOD A B C R(A) := RK(B) % RK(C)
POW A B C R(A) := RK(B)  ̂RK(C)

Binary operators (arithmetic operators with two inputs.) The result of the
operation between RK(B) and RK(C) is placed into R(A). These
instructions are in the classic 3-register style. RK(B) and RK(C) may be
either registers or constants in the constant pool.

ADD is addition. SUB is subtraction. MUL is multiplication. DIV is division.
MOD is modulus (remainder). POW is exponentiation.

The source operands, RK(B) and RK(C), may be constants. If a constant is out of range of
field B or field C, then the constant will be loaded into a temporary register in advance.

>local a,b = 2,4; a = a + 4 * b - a / 2 ^ b % 3
; function [0] definition (level 1)
; 0 upvalues, 0 params, 4 stacks
.function  0 0 2 4
.local  "a"  ; 0
.local  "b"  ; 1
.const  2  ; 0
.const  4  ; 1
.const  3  ; 2
[1] loadk      0   0        ; 2
[2] loadk      1   1        ; 4
[3] mul        2   257 1    ; 4    (loc2 = 4 * b)
[4] add        2   0   2           (loc2 = A + loc2 )
[5] pow        3   256 1    ; 2    (loc3 = 2 ^ b)
[6] div        3   0   3           (loc3 = a / loc3 )
[7] mod        3   3   258  ; 3    (loc3 = loc3 % 3 )
[8] sub        0   2   3           (a = loc2 – loc3 )
[9] return     0   1      
; end of function

In the disassembly shown above, parts of the expression is shown as additional comments in
parentheses. Each arithmetic operator translates into a single instruction. This also means that
while the statement “count = count + 1 ” is verbose, it translates into a single instruction
if  count is a local. If count is a global, then two extra instructions are required to read and
write to the global (GETGLOBAL and SETGLOBAL), since arithmetic operations can only
be done on registers (locals) only.

As of Lua 5.1, the parser and code generator can perform limited constant expression folding
or evaluation.  Constant  folding  only works for  binary arithmetic  operators and the unary
minus operator (UNM, which will be covered next.) There is no equivalent optimization for
relational, boolean or string operators.
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The  optimization  rule  is  simple:  If  both  terms  of  a  subexpression  are  numbers,  the
subexpression will  be evaluated at compile  time.  However, there are exceptions.  One, the
code generator will  not attempt to divide a number by 0 for DIV and MOD, and two, if the
result is evaluated as a NaN (Not a Number) then the optimization will not be performed.

Also,  constant  folding  is  not  done if  one term is  in  the form of a string  that  need to be
coerced.  In  addition,  expression  terms  are  not  rearranged,  so  not  all  optimization
opportunities  can be recognized by the code generator. This is  intentional;  the Lua code
generator is not meant to perform heavy duty optimizations, as Lua is a lightweight language.
Here are a few examples to illustrate how it works (additional comments in parentheses):

>local a = 4 + 7 + b; a = b + 4 * 7; a = b + 4 + 7
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.const  "b"  ; 0
.const  11  ; 1
.const  28  ; 2
.const  4  ; 3
.const  7  ; 4
[1] getglobal  0   0        ; b
[2] add        0   257 0    ; 11    (a = 11 + b)
[3] getglobal  1   0        ; b
[4] add        0   1   258  ; 28    (a = b + 28)
[5] getglobal  1   0        ; b
[6] add        1   1   259  ; 4     (loc1 = b + 4)
[7] add        0   1   260  ; 7     (a = loc1 + 7)
[8] return     0   1      
; end of function

For the first assignment statement, 4+7 is evaluated, thus 11 is added to b in line [2]. Next, in
line [3] and [4], b and 28 are added together and assigned to a because multiplication has a
higher precedence and 4*7 is evaluated first. Finally, on lines [5] to [7], there are two addition
operations. Since addition is left-associative, code is generated for  b+4 first, and only after
that, 7 is added. So in the third example, Lua performs no optimization. This can be fixed
using parentheses to explicitly change the precedence of a subexpression:

>local a = b + (4 + 7)
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.const  "b"  ; 0
.const  11  ; 1
[1] getglobal  0   0        ; b
[2] add        0   0   257  ; 11
[3] return     0   1      
; end of function

Now, the 4+7 subexpression can be evaluated at compile time. If the statement is written as:

local a = 7 + (4 + 7)

the code generator will generate a single LOADK instruction; Lua first evaluates 4+7, then 7
is added, giving a total of 18. The arithmetic expression is completely evaluated in this case,
thus no arithmetic instructions are generated.
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In order to make full use of constant folding in Lua 5.1, the user just need to remember the
usual order of evaluation of an expression’s elements and apply parentheses where necessary.
The following are two expressions which will not be evaluated at compile time:

>local a = 1 / 0; local b = 1 + "1"
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.local  "b"  ; 1
.const  1  ; 0
.const  0  ; 1
.const  "1"  ; 2
[1] div        0   256 257  ; 1 0
[2] add        1   256 258  ; 1 "1"
[3] return     0   1      
; end of function

The first is due to a divide-by-0, while the second is due to a string constant that needs to be
coerced into a number. In both cases, constant folding is not performed, so the arithmetic
instructions needed to perform the operations at run time are generated instead.

Next are instructions for performing unary minus and logical NOT:

UNM A B R(A) := -R(B)

Unary minus (arithmetic operator with one input.) R(B) is negated and the
value placed in R(A). R(A) and R(B) are always registers.

NOT A B R(A) := not R(B)

Applies a boolean NOT to the value in R(B) and places the result in R(A).
R(A) and R(B) are always registers.

Here is an example of both unary operations:

>local p,q = 10,false; q,p = -p,not q
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.local  "p"  ; 0
.local  "q"  ; 1
.const  10  ; 0
[1] loadk      0   0        ; 10
[2] loadbool   1   0   0    ; false
[3] unm        2   0      
[4] not        0   1      
[5] move       1   2      
[6] return     0   1      
; end of function

Both UNM and NOT do not accept a constant as a source operand, making the LOADK on
line  [1] and the LOADBOOL on line  [2] necessary. When an unary minus is applied to a
constant number, the unary minus is optimized away. Similarly, when a not is applied to true
or false, the logical operation is optimized away.
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In addition to this, constant folding is performed for unary minus, if the term is a number. So,
the expression in the following is completely evaluated at compile time:

>local a = - (7 / 4)
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.const  -1.75  ; 0
[1] loadk      0   0        ; -1.75
[2] return     0   1      
; end of function

Constant folding is performed on 7/4 first. Then, since the unary minus operator is applied to
the constant 1.75, constant folding can be performed again, and the code generated becomes a
simple LOADK (on line [1].)

LEN A B R(A) := length of R(B)

Returns the length of the object in R(B). For strings, the string length is
returned, while for tables, the table size (as defined in Lua) is returned. For
other objects, the metamethod is called. The result, which is a number, is
placed in R(A).

This instruction is new in Lua 5.1, implementing the # operator. If # operates on a constant,
then the constant is loaded in advance using LOADK. The LEN instruction is currently not
optimized away using compile time evaluation, even if it is operating on a constant string or
table.

>local a,b; a = #b; a= #"foo"
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.local  "a"  ; 0
.local  "b"  ; 1
.const  "foo"  ; 0
[1] len        0   1      
[2] loadk      2   0        ; "foo"
[3] len        0   2      
[4] return     0   1      
; end of function

In the above example, LEN operates on local b in line [1], leaving the result in local a. Since
LEN cannot  operate directly on constants,  line  [2]  first  loads  the constant  “foo”  into  a
temporary local, and only then LEN is executed.

CONCAT A B C R(A) := R(B).. ... ..R(C)

Performs concatenation of two or more strings. In a Lua source, this is
equivalent to one or more concatenation operators (‘..’) between two or
more expressions. The source registers must be consecutive, and C must
always be greater than B. The result is placed in R(A).

Like  LOADNIL,  CONCAT  accepts  a  range  of  registers.  Doing  more  than  one  string
concatenation at a time is faster and more efficient than doing them separately.
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>local x,y = "foo","bar"; return x..y..x..y
; function [0] definition (level 1)
; 0 upvalues, 0 params, 6 stacks
.function  0 0 2 6
.local  "x"  ; 0
.local  "y"  ; 1
.const  "foo"  ; 0
.const  "bar"  ; 1
[1] loadk      0   0        ; "foo"
[2] loadk      1   1        ; "bar"
[3] move       2   0      
[4] move       3   1      
[5] move       4   0      
[6] move       5   1      
[7] concat     2   2   5  
[8] return     2   2      
[9] return     0   1      
; end of function

In this example, strings are moved into place first (lines [3] to [6]) in the concatenation order
before a single CONCAT instruction is executed in line [7]. The result is left  in temporary
local 2, which is then used as a return value by the RETURN instruction on line [8].

>local a = "foo".."bar".."baz"
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.local  "a"  ; 0
.const  "foo"  ; 0
.const  "bar"  ; 1
.const  "baz"  ; 2
[1] loadk      0   0        ; "foo"
[2] loadk      1   1        ; "bar"
[3] loadk      2   2        ; "baz"
[4] concat     0   0   2  
[5] return     0   1      
; end of function

In the second example, three strings are concatenated together. Note that there is no string
constant  folding.  Lines [1]  through [3]  loads the three constants  in  the correct  order  for
concatenation; the CONCAT on line  [4] performs the concatenation itself  and assigns the
result to local a.
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10  Jumps and Calls
Lua does not have any unconditional jump feature in the language itself,  but in the virtual
machine, the unconditional jump is used in control structures and logical expressions.

JMP sBx PC += sBx

Performs an unconditional jump, with sBx as a signed displacement. sBx is
added to the program counter (PC), which points to the next instruction to
be executed. E.g., if sBx is 0, the VM will proceed to the next instruction.

JMP is used in loops, conditional statements, and in expressions when a
boolean true/false need to be generated.

For example, since a relational test instruction makes conditional jumps rather than generate a
boolean result, a JMP is used in the code sequence for loading either a true or a false:

>local m, n; return m >= n
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.local  "m"  ; 0
.local  "n"  ; 1
[1] le         1   1   0    ; to [3] if false    (n  <= m)
[2] jmp        1            ; to [4]
[3] loadbool   2   0   1    ; false, to [5]      (f alse path)
[4] loadbool   2   1   0    ; true               (t rue path)
[5] return     2   2      
[6] return     0   1      
; end of function

Line[1] performs the relational test. In line [2], the JMP skips over the false path (line [3]) to
the true path (line [4]). The result is placed into temporary local 2, and returned to the caller
by RETURN in line [5]. More examples where JMP is used will be covered in later chapters.

Next we will look at the CALL instruction, for calling instantiated functions:

CALL A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1))

Performs a function call, with register R(A) holding the reference to the
function object to be called. Parameters to the function are placed in the
registers following R(A). If B is 1, the function has no parameters. If B is 2
or more, there are (B-1) parameters.

If B is 0, the function parameters range from R(A+1) to the top of the stack.
This form is used when the last expression in the parameter list is a
function call, so the number of actual parameters is indeterminate.

Results returned by the function call is placed in a range of registers
starting from R(A). If C is 1, no return results are saved. If C is 2 or more,
(C-1) return values are saved. If C is 0, then multiple return results are
saved, depending on the called function.

CALL always updates the top of stack value. CALL, RETURN, VARARG
and SETLIST can use multiple values (up to the top of the stack.)
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Generally speaking, for fields B and C, a zero means that multiple results or parameters (up to
the top of stack) are expected. If the number of results or parameters are fixed, then the actual
number is one less than the encoded field value. Here is the simplest possible call:

>z()
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.const  "z"  ; 0
[1] getglobal  0   0        ; z
[2] call       0   1   1  
[3] return     0   1      
; end of function

In line [2], the call has zero parameters (field B is 1), zero results are retained (field C is 1),
while register 0 temporarily holds the reference to the function object from global z. Next we
see a function call with multiple parameters or arguments:

>z(1,2,3)
; function [0] definition (level 1)
; 0 upvalues, 0 params, 4 stacks
.function  0 0 2 4
.const  "z"  ; 0
.const  1  ; 1
.const  2  ; 2
.const  3  ; 3
[1] getglobal  0   0        ; z
[2] loadk      1   1        ; 1
[3] loadk      2   2        ; 2
[4] loadk      3   3        ; 3
[5] call       0   4   1  
[6] return     0   1      
; end of function

Lines [1] to [4] loads the function reference and the arguments in order, then line [5] makes
the call with an operand B value of 4, which means there are 3 parameters. Since the call
statement is not assigned to anything, no return results need to be retained, hence field C is 1.
Here is an example that uses multiple parameters and multiple return values:

>local p,q,r,s = z(y())
; function [0] definition (level 1)
; 0 upvalues, 0 params, 4 stacks
.function  0 0 2 4
.local  "p"  ; 0
.local  "q"  ; 1
.local  "r"  ; 2
.local  "s"  ; 3
.const  "z"  ; 0
.const  "y"  ; 1
[1] getglobal  0   0        ; z
[2] getglobal  1   1        ; y
[3] call       1   1   0  
[4] call       0   0   5  
[5] return     0   1      
; end of function

First, the function references are retrieved (lines [1] and [2]), then function  y is called first
(temporary register 1). The CALL has a field  C of 0, meaning  multiple  return values are
accepted. These return values become the parameters to function z, and so in line [4], field B
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of the CALL instruction is 0, signifying multiple parameters. After the call to function z, 4
results are retained,  so field  C in  line  [4] is  5. Finally,  here is  an example  with calls  to
standard library functions:

>print(string.char(64))
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.const  "print"  ; 0
.const  "string"  ; 1
.const  "char"  ; 2
.const  64  ; 3
[1] getglobal  0   0        ; print
[2] getglobal  1   1        ; string
[3] gettable   1   1   258  ; "char"
[4] loadk      2   3        ; 64
[5] call       1   2   0  
[6] call       0   0   1  
[7] return     0   1      
; end of function

When a function  call  is  the last  parameter  to another function  call,  the  former  can pass
multiple return values, while the latter can accept multiple parameters.

Complementing CALL is RETURN:

RETURN A B return R(A), ... ,R(A+B-2)

Returns to the calling function, with optional return values. If B is 1, there
are no return values. If B is 2 or more, there are (B-1) return values,
located in consecutive registers from R(A) onwards.

If B is 0, the set of values from R(A) to the top of the stack is returned. This
form is used when the last expression in the return list is a function call, so
the number of actual values returned is indeterminate.

RETURN also closes any open upvalues, equivalent to a CLOSE
instruction. See the CLOSE instruction for more information.

Like CALL, a field B value of 0 signifies multiple return values (up to top of stack.)

>local e,f,g; return f,g
; function [0] definition (level 1)
; 0 upvalues, 0 params, 5 stacks
.function  0 0 2 5
.local  "e"  ; 0
.local  "f"  ; 1
.local  "g"  ; 2
[1] move       3   1      
[2] move       4   2      
[3] return     3   3      
[4] return     0   1      
; end of function

In line [3], 2 return values are specified (field B value of 3.) The return values are placed in
consecutive  registers  starting  from  register  3  by  the  MOVEs  on line  [1]  and  [2].  The
RETURN in line [4] is redundant; it is always generated by the Lua code generator.
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TAILCALL A B C return R(A)(R(A+1), ... ,R(A+B-1))

Performs a tail call, which happens when a return statement has a single
function call as the expression, e.g. return foo(bar) . A tail call is
effectively a goto, and avoids nesting calls another level deeper. Only Lua
functions can be tailcalled.

Like CALL, register R(A) holds the reference to the function object to be
called. B encodes the number of parameters in the same manner as a
CALL instruction.

C isn’t used by TAILCALL, since all return results are significant. In any
case, Lua always generates a 0 for C, to denote multiple return results.

A TAILCALL is  used only for one specific  return  style, described above. Multiple return
results are always produced by a tail call. Here is an example:

>return x("foo", "bar")
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.const  "x"  ; 0
.const  "foo"  ; 1
.const  "bar"  ; 2
[1] getglobal  0   0        ; x
[2] loadk      1   1        ; "foo"
[3] loadk      2   2        ; "bar"
[4] tailcall   0   3   0  
[5] return     0   0      
[6] return     0   1      
; end of function

Arguments for a tail call are handled in exactly the same way as arguments for a normal call,
so in line [3], the tail call has a field B value of 3, signifying 2 parameters. Field C is 0, for
multiple returns; this due to the constant LUA_MULTRET in  lua.h . In practice, field C is
not used by the virtual machine (except as an assert) since the syntax guarantees multiple
return results.

Line [5] is a RETURN instruction specifying multiple return results. This is required when
the function called  by TAILCALL is  a C function. In the case of a C function, execution
continues to line [5] upon return, thus the RETURN is necessary. Line [6] is redundant. When
Lua functions are tailcalled, the virtual machine does not return to line [5] at all.

The other instructions covered in this section are SELF and VARARG. Both instructions are
covered here because they are closely tied to function calls. We will start with VARARG:

VARARG A B R(A), R(A+1), ..., R(A+B-1) = vararg

VARARG implements the vararg operator ‘...’ in expressions. VARARG
copies B-1 parameters into a number of registers starting from R(A),
padding with nils if there aren’t enough values. If B is 0, VARARG copies
as many values as it can based on the number of parameters passed. If a
fixed number of values is required, B is a value greater than 1. If any
number of values is required, B is 0.
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The use of VARARG will become clear with the help of a few examples:

>local a,b,c = ...
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.local  "a"  ; 0
.local  "b"  ; 1
.local  "c"  ; 2
[1] vararg     0   4      
[2] return     0   1      
; end of function

Note that the main or top-level chunk is a vararg function, as the is_vararg flag is set (the
third number of the .function  directive) in the example above. In this example, the left hand
side of the assignment statement needs three values (or objects.) So in line [1], the operand B
of the VARARG instruction is (3+1), or 4. VARARG will copy three values into a, b and c.
If there are less than three values available, nils will be used to fill up the empty places.

>local a = function(...) local a,b,c = ... end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0

  ; function [0] definition (level 2)
  ; 0 upvalues, 0 params, 4 stacks
  .function  0 0 3 4
  .local  "arg"  ; 0
  .local  "a"  ; 1
  .local  "b"  ; 2
  .local  "c"  ; 3
  [1] vararg     1   4      
  [2] return     0   1      
  ; end of function

[1] closure    0   0        ; 0 upvalues
[2] return     0   1      
; end of function

Here is an alternate version where a function is instantiated and assigned to local a. The old-
style arg is retained for compatibility purposes, but is unused in the above example.

>local a; a(...)
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.local  "a"  ; 0
[1] move       1   0      
[2] vararg     2   0      
[3] call       1   0   1  
[4] return     0   1      
; end of function

When a function  is  called  with  ‘...’ as  the argument,  the function  will  accept a variable
number of parameters or arguments. On line [2], a VARARG with a B field of 0 is used. The
VARARG will copy all the parameters passed on to the main chunk to register 2 onwards, so
that the CALL in the next line can utilize them as parameters of function a. The function call
is set to accept a multiple number of parameters and returns zero results.
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>local a = {...}
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
[1] newtable   0   0   0    ; array=0, hash=0
[2] vararg     1   0      
[3] setlist    0   0   1    ; index 1 to top
[4] return     0   1      
; end of function

>return ...
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
[1] vararg     0   0      
[2] return     0   0      
[3] return     0   1      
; end of function

Above are two other cases where VARARG needs to copy all passed parameters over to a set
of registers in order for the next operation to proceed. Both the above forms of table creation
and return accepts a variable number of values or objects.

SELF A B C R(A+1) := R(B); R(A) := R(B)[RK(C)]

For object-oriented programming using tables. Retrieves a function
reference from a table element and places it in register R(A), then a
reference to the table itself is placed in the next register, R(A+1). This
instruction saves some messy manipulation when setting up a method call.

R(B) is the register holding the reference to the table with the method. The
method function itself is found using the table index RK(C), which may be
the value of register R(C) or a constant number.

Finally,  we have an instruction,  SELF, which is  used for object-oriented programming.  A
SELF instruction saves an extra instruction and speeds up the calling of methods in object-
oriented programming. It is only generated for method calls that use the colon syntax. In the
following example:

>foo:bar("baz")
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.const  "foo"  ; 0
.const  "bar"  ; 1
.const  "baz"  ; 2
[1] getglobal  0   0        ; foo
[2] self       0   0   257  ; "bar"
[3] loadk      2   2        ; "baz"
[4] call       0   3   1  
[5] return     0   1      
; end of function

The method call is equivalent to: foo.bar(foo, "baz") , except that the global foo  is only
looked up  once. This is significant  if  metamethods have been set.  The SELF in line  [2] is
equivalent to a GETTABLE lookup (the table is in register 0 and the index is constant 1) and
a MOVE (copying the table reference from register 0 to register 1.)
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Without  SELF,  a GETTABLE will  write  its  lookup result  to register  0 (which  the code
generator will normally do) and the table reference will be overwritten before a MOVE can be
done. Using SELF saves roughly one instruction and one temporary register slot.

After setting up the method call using SELF, the call is made with the usual CALL instruction
in line [4], with two parameters. The equivalent code for a method lookup is compiled in the
following manner:

>foo.bar(foo, "baz")
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.const  "foo"  ; 0
.const  "bar"  ; 1
.const  "baz"  ; 2
[1] getglobal  0   0        ; foo
[2] gettable   0   0   257  ; "bar"
[3] getglobal  1   0        ; foo
[4] loadk      2   2        ; "baz"
[5] call       0   3   1  
[6] return     0   1      
; end of function

The alternative form of a method call is one instruction longer, and the user must take note of
any metamethods that may affect  the call.  The SELF in the previous example  replaces the
GETTABLE on line [2] and the GETGLOBAL on line [3]. If foo is a local variable, then the
equivalent code is a GETTABLE and a MOVE.

Next we will look at more complicated instructions.
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11  Relational and Logic Instructions
Relational and logic instructions are used in conjunction with other instructions to implement
control structures or expressions.  Instead of generating  boolean results,  these instructions
conditionally perform a jump  over the next  instruction;  the emphasis  is  on implementing
control blocks. Instructions are arranged so that there are two paths to follow based on the
relational test.

EQ A B C if ((RK(B) == RK(C)) ~= A) then PC++
LT A B C if ((RK(B) <  RK(C)) ~= A) then PC++
LE A B C if ((RK(B) <= RK(C)) ~= A) then PC++

Compares RK(B) and RK(C), which may be registers or constants. If the
boolean result is not A, then skip the next instruction. Conversely, if the
boolean result equals A, continue with the next instruction.

EQ is for equality. LT is for “less than” comparison. LE is for “less than or
equal to” comparison. The boolean A field allows the full set of relational
comparison operations to be synthesized from these three instructions.
The Lua code generator produces either 0 or 1 for the boolean A.

For the fall-through case, a JMP is always expected, in order to optimize
execution in the virtual machine. In effect, EQ, LT and LE must always be
paired with a following JMP instruction.

By comparing the result of the relational operation with A, the sense of the comparison can be
reversed. Obviously the alternative is to reverse the paths taken by the instruction, but that
will  probably complicate code generation some more. The conditional jump is performed if
the comparison result is not A, whereas execution continues normally if the comparison result
matches A. Due to the way code is generated and the way the virtual machine works, a JMP
instruction is always expected to follow an EQ, LT or LE. The following JMP is optimized by
executing it in conjunction with EQ, LT or LE.

>local x,y; return x ~= y
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.local  "x"  ; 0
.local  "y"  ; 1
[1] loadnil    0   1      
[2] eq         0   0   1    ; to [4] if true    (x ~= y)
[3] jmp        1            ; to [5]
[4] loadbool   2   0   1    ; false, to [6]     (fa lse result path)
[5] loadbool   2   1   0    ; true              (tr ue result path)
[6] return     2   2      
[7] return     0   1      
; end of function

In  the  above  example,  the  equality  test  is  performed  in line  [2].  However,  since  the
comparison need to be returned as a result, LOADBOOL instructions are used to set a register
with the correct  boolean value.  This  is  the usual code pattern generated if  the expression
requires a boolean value to be generated and stored in a register as an intermediate value or a
final result.
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It is easier to visualize the disassembled code as:

if x ~= y then
  return true
else
  return false
end

The true result path (when the comparison result matches A) goes like this:

[1] loadnil    0   1      
[2] eq         0   0   1    ; to [4] if true    (x ~= y)
[3] jmp        1            ; to [5]
[5] loadbool   2   1   0    ; true              (tr ue path)
[6] return     2   2      

while the false result path (when the comparison result does not match A) goes like this:

[1] loadnil    0   1      
[2] eq         0   0   1    ; to [4] if true    (x ~= y)
[4] loadbool   2   0   1    ; false, to [6]     (fa lse path)
[6] return     2   2      

ChunkSpy comments the EQ in line [2] by letting the user know when the conditional jump is
taken. The jump is taken when “the value in register 0 equals to the value in register 1” (the
comparison) is not false (the value of operand A). If the comparison is x == y, everything will
be the same except that the A operand in the EQ instruction will be 1, thus reversing the sense
of the comparison. Anyway, these are just the Lua code generator’s conventions;  there are
other ways to code x ~= y in terms of Lua virtual machine instructions.

For  conditional  statements,  there is  no  need to set  boolean results.  Lua is  optimized  for
coding the more common conditional statements rather than conditional expressions.

>local x,y; if x ~= y then return "foo" else return "bar" end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.local  "x"  ; 0
.local  "y"  ; 1
.const  "foo"  ; 0
.const  "bar"  ; 1
[1] eq         1   0   1    ; to [3] if false    (x  ~= y)
[2] jmp        3            ; to [6]
[3] loadk      2   0        ; "foo"              (t rue block)
[4] return     2   2      
[5] jmp        2            ; to [8]
[6] loadk      2   1        ; "bar"              (f alse block)
[7] return     2   2      
[8] return     0   1      
; end of function

In the above conditional statement, the same inequality operator is used in the source, but the
sense of the EQ instruction in line [1] is now reversed. Since the EQ conditional jump can
only skip the next instruction, additional JMP instructions are needed to allow large blocks of
code to be placed in both true and false paths. In contrast, in the previous example, only a
single instruction is needed to set a boolean value. For if  statements, the true block comes
first  followed by the false  block  in  code generated by the code generator. To reverse the
positions of the true and false paths, the value of operand A is changed.
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The true path (when x ~= y is true) goes from [1] to [3]–[5] and on to [8]. Since there is a
RETURN in line [4], the JMP in line [5] and the RETURN in [8] are never executed at all;
they are redundant but does not adversely affect performance in any way. The false path is
from [1] to [2] to [6]–[8] onwards. So in a disassembly listing, you should see the true and
false code blocks in the same order as in the Lua source.

The following is another example, this time with an elseif:

>if 8 > 9 then return 8 elseif 5 >= 4 then return 5 else return 9 end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.const  8  ; 0
.const  9  ; 1
.const  5  ; 2
.const  4  ; 3
[01] lt         0   257 256  ; 9 8, to [3] if true    (9 < 8)
[02] jmp        3            ; to [6]
[03] loadk      0   0        ; 8                      (1st true block)
[04] return     0   2      
[05] jmp        7            ; to [13]
[06] le         0   259 258  ; 4 5, to [8] if true    (4 <= 5)
[07] jmp        3            ; to [11]
[08] loadk      0   2        ; 5                      (2nd true block)
[09] return     0   2      
[10] jmp        2            ; to [13]
[11] loadk      0   1        ; 9                      (2nd false block)
[12] return     0   2      
[13] return     0   1      
; end of function

This example is a little more complex, but the blocks are structured in the same order as the
Lua source, so interpreting the disassembled code should not be too hard.

Next are the two instructions used for performing boolean tests and implementing Lua’s logic
operators:

TEST A C if not (R(A) <=> C) then PC++
TESTSET A B C if (R(B) <=> C) then R(A) := R(B) else PC++

Used to implement and and or logical operators, or for testing a single
register in a conditional statement.

For TESTSET, register R(B) is coerced into a boolean and compared to
the boolean field C. If R(B) matches C, the next instruction is skipped,
otherwise R(B) is assigned to R(A) and the VM continues with the next
instruction. The and operator uses a C of 0 (false) while or uses a C value
of 1 (true).

TEST is a more primitive version of TESTSET. TEST is used when the
assignment operation is not needed, otherwise it is the same as TESTSET
except that the operand slots are different.

For the fall-through case, a JMP is always expected, in order to optimize
execution in the virtual machine. In effect, TEST and TESTSET must
always be paired with a following JMP instruction.
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TEST and  TESTSET are  used  in  conjunction  with  a  following  JMP  instruction,  while
TESTSET has an addditional conditional assignment. Like EQ, LT and LE, the following
JMP instruction is compulsory, as the virtual machine will  execute the JMP together with
TEST or TESTSET.  The two instructions  are  used to implement  short-circuit  LISP-style
logical operators that retains and propagates operand values instead of booleans. First, we’ll
look at how and and or behaves:

>local a,b,c; c = a and b
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.local  "a"  ; 0
.local  "b"  ; 1
.local  "c"  ; 2
[1] testset    2   0   0    ; to [3] if true
[2] jmp        1            ; to [4]
[3] move       2   1      
[4] return     0   1      
; end of function

An  and  sequence  exits  on false  operands  (which  can be  false or  nil) because any  false
operands in  a string  of  and  operations will  make the whole boolean expression  false.  If
operands evaluates to true, evaluation continues. When a string of and operations evaluates
to true, the result is the last operand value.

In line [1], the first operand (the local a) is set to local c when the test is false (with a field C
of 0), while the jump to [3] is made when the test is true, and then in line [3], the expression
result is set to the second operand (the local b). This is equivalent to:

if a then
  c = b      -- executed by MOVE on line [3]
else
  c = a      -- executed by TESTSET on line [1]
end

The c = a portion is done by TESTSET itself, while MOVE performs c = b. Now, if the result
is already set with one of the possible values, a TEST instruction is used instead:

>local a,b; a = a and b
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.local  "b"  ; 1
[1] test       0       0    ; to [3] if true
[2] jmp        1            ; to [4]
[3] move       0   1      
[4] return     0   1      
; end of function

The TEST instruction does not perform an assignment operation, since  a = a is redundant.
This makes TEST a little faster. This is equivalent to:

if a then
  a = b
end

Next, we will look at the or operator:
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>local a,b,c; c = a or b
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.local  "a"  ; 0
.local  "b"  ; 1
.local  "c"  ; 2
[1] testset    2   0   1    ; to [3] if false
[2] jmp        1            ; to [4]
[3] move       2   1      
[4] return     0   1      
; end of function

An or sequence exits on true operands, because any operands evaluating to true in a string of
or operations will  make the whole boolean expression  true. If operands evaluates to false,
evaluation continues.  When a string of  or  operations evaluates to  false,  all operands must
have evaluated to false.

In line [1], the local a value is set to local c if it is true, while the jump is made if it is false
(the field C is 1). Thus in line [3], the local b value is the result of the expression if local a
evaluates to false. This is equivalent to:

if a then
  c = a      -- executed by TESTSET on line [1]
else
  c = b      -- executed by MOVE on line [3]
end

Like the case of and, TEST is used when the result already has one of the possible values,
saving an assignment operation:

>local a,b; a = a or b
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.local  "b"  ; 1
[1] test       0       1    ; to [3] if false
[2] jmp        1            ; to [4]
[3] move       0   1      
[4] return     0   1      
; end of function

Short-circuit logical operators also means that the following Lua code does not require the use
of a boolean operation:

>local a,b,c; if a > b and a > c then return a end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.local  "a"  ; 0
.local  "b"  ; 1
.local  "c"  ; 2
[1] lt         0   1   0    ; to [3] if true
[2] jmp        3            ; to [6]
[3] lt         0   2   0    ; to [5] if true
[4] jmp        1            ; to [6]
[5] return     0   2      
[6] return     0   1      
; end of function
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With short-circuit evaluation, a > c is never executed if a > b is false, so the logic of the Lua
statement can be readily implemented using the normal conditional structure. If both a > b
and a > c are true, the path followed is [1] (the a > b test) to [3] (the a > c test) and finally to
[5], returning the value of a. A TEST instruction is not required. This is equivalent to:

if a > b then
  if a > c then
    return a
  end
end

For a single variable used in the expression part of a conditional statement, TEST is used to
boolean-test the variable:

>if Done then return end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.const  "Done"  ; 0
[1] getglobal  0   0        ; Done
[2] test       0       0    ; to [4] if true
[3] jmp        1            ; to [5]
[4] return     0   1      
[5] return     0   1      
; end of function

In line [2], the TEST instruction jumps to the true block if the value in temporary register 0
(from the global Done) is true. The JMP at line [3] jumps over the true block, which is the
code inside the if block (line [4].)

If the test expression of a conditional statement consist  of purely boolean operators, then a
number of TEST instructions will be used in the usual short-circuit evaluation style:

>if Found and Match then return end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.const  "Found"  ; 0
.const  "Match"  ; 1
[1] getglobal  0   0        ; Found
[2] test       0       0    ; to [4] if true
[3] jmp        4            ; to [8]
[4] getglobal  0   1        ; Match
[5] test       0       0    ; to [7] if true
[6] jmp        1            ; to [8]
[7] return     0   1      
[8] return     0   1      
; end of function

In the last example, the true block of the conditional statement is executed only if both Found
and  Match  evaluates to  true.  The path is from [2] (test for  Found) to [4] to [5] (test for
Match) to [7] (the true block, which is an explicit return statement.)

If the statement has an else section, then the JMP on line [6] will jump to the false block (the
else  block) while an additional JMP will  be added to the true block to jump over this new
block  of code. If  or  is  used instead of  and,  the appropriate C operand will  be  adjusted
accordingly.
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Finally, here is how Lua’s ternary operator (:? in C) equivalent works:

>local a,b,c; a = a and b or c
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.local  "a"  ; 0
.local  "b"  ; 1
.local  "c"  ; 2
[1] test       0       0    ; to [3] if true
[2] jmp        2            ; to [5]
[3] testset    0   1   1    ; to [5] if false
[4] jmp        1            ; to [6]
[5] move       0   2      
[6] return     0   1      
; end of function

The TEST in line [1] is for the and operator. First, local a is tested in line [1]. If it is false,
then execution continues in [2], jumping to line [5]. Line [5] assigns local c to the end result
because since if a is false, then a and b is false, and false or c is c.

If local a is true in line [1], the TEST instruction makes a jump to line [3], where there is a
TESTSET, for the or operator. If b evaluates to true, then the end result is assigned the value
of b, because b or c is b if b is not false. If b is also false, the end result will be c.

For the instructions in line [1], [3] and [5], the target (in field A) is register 0, or the local a,
which is the location where the result of the boolean expression is assigned. The equivalent
Lua code is:

if a then
  if b then
    a = b
  else
    a = c
  end
else
  a = c
end

The two a = c assignments are actually the same piece of code, but are repeated here to avoid
using a goto and a label. Normally, if we assume b is not false and not nil, we end up with the
more recognizable form:

if a then
  a = b     -- assuming b ~= false
else
  a = c
end
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12  Loop Instructions
Lua has dedicated instructions to implement the two types of for loops, while the other two
types of loops uses traditional test-and-jump.

FORPREP A sBx R(A) -= R(A+2); PC += sBx
FORLOOP A sBx R(A) += R(A+2)

if R(A) <?= R(A+1) then {
    PC += sBx; R(A+3) = R(A)
}

FORPREP initializes a numeric for loop, while FORLOOP performs an
iteration of a numeric for loop.

A numeric for loop requires 4 registers on the stack, and each register
must be a number. R(A) holds the initial value and doubles as the internal
loop variable (the internal index); R(A+1) is the limit; R(A+2) is the stepping
value; R(A+3) is the actual loop variable (the external index) that is local to
the for block.

FORPREP sets up a for loop. Since FORLOOP is used for initial testing of
the loop condition as well as conditional testing during the loop itself,
FORPREP performs a negative step and jumps unconditionally to
FORLOOP so that FORLOOP is able to correctly make the initial loop test.
After this initial test, FORLOOP performs a loop step as usual, restoring
the initial value of the loop index so that the first iteration can start.

In FORLOOP, a jump is made back to the start of the loop body if the limit
has not been reached or exceeded. The sense of the comparison depends
on whether the stepping is negative or positive, hence the “<?=” operator.
Jumps for both instructions are encoded as signed displacements in the
sBx field. An empty loop has a FORLOOP sBx value of -1.

FORLOOP also sets R(A+3), the external loop index that is local to the
loop block. This is significant if the loop index is used as an upvalue (see
below.) R(A), R(A+1) and R(A+2) are not visible to the programmer.

The loop variable ends with the last value before the limit is reached
(unlike C) because it is not updated unless the jump is made. However,
since loop variables are local to the loop itself, you should not be able to
use it unless you cook up an implementation-specific hack.

Loop indices  behave  a  little  differently in  Lua 5.1 compared to Lua 5.0.2.  Consider  the
following, where loop index i is used as an upvalue in the instantiation of 10 functions:

local a = {}
for i = 1, 10 do
  a[i] = function() return i end
end
print(a[5]())

Lua 5.0.2 will print out 10, while Lua 5.1 will print out 5. In Lua 5.0.2, the scope of the loop
index encloses the for loop, resulting in the creation of a single upvalue. In Lua 5.1, the loop
index is truly local to the loop, resulting in the creation of 10 separate upvalues.
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For the sake of efficiency, FORLOOP contains a lot of functionality, so when a loop iterates,
only one instruction, FORLOOP, is needed. Here is a simple example:

>local a = 0; for i = 1,100,5 do a = a + i end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 5 stacks
.function  0 0 2 5
.local  "a"  ; 0
.local  "(for index)"  ; 1
.local  "(for limit)"  ; 2
.local  "(for step)"  ; 3
.local  "i"  ; 4
.const  0  ; 0
.const  1  ; 1
.const  100  ; 2
.const  5  ; 3
[1] loadk      0   0        ; 0
[2] loadk      1   1        ; 1
[3] loadk      2   2        ; 100
[4] loadk      3   3        ; 5
[5] forprep    1   1        ; to [7]
[6] add        0   0   4  
[7] forloop    1   -2       ; to [6] if loop
[8] return     0   1      
; end of function

In the above example, notice that the for loop causes three additional local pseudo-variables
(or internal variables) to be defined, apart from the external loop index, i. The three pseudo-
variables, named (for index), (for limit) and (for step) are required to completely specify the
state of the loop, and are not visible  to Lua source code. They are arranged in consecutive
registers, with the external loop index given by R(A+3) or register 4 in the example.

The loop body is in line [6] while line [7] is the FORLOOP instruction that steps through the
loop state. The sBx field of FORLOOP is negative, as it always jumps back to the beginning
of the loop body.

Lines [2]–[4] initializes the three register locations where the loop state will be stored. If the
loop step is not specified in the Lua source, a constant 1 is added to the constant pool and a
LOADK instruction is used to initialize the pseudo-variable (for step) with the loop step.

FORPREP in lines [5] makes a negative loop step and jumps to line [7] for the initial test. In
the example, at line [5], the internal loop index (at register 1) will be (1-5) or -4. When the
virtual machine arrives at the FORLOOP in line [7] for the first time, one loop step is made
prior to the first test, so the initial value that is actually tested against the limit is (-4+5) or 1.
Since 1 < 100, an iteration will be performed. The external loop index i is then set to 1 and a
jump is made to line [6], thus starting the first iteration of the loop.

The loop at line [6]–[7] repeats until the internal loop index exceeds the loop limit  of 100.
The conditional jump is not taken when that occurs and the loop ends. Beyond the scope of
the loop body, the loop state ((for index),  (for limit),  (for step) and i) is not valid. This is
determined by the parser and code generator. The range of PC values for which the loop state
variables  are  valid  is  located  in  the locals  list.  The brief  assembly  listings  generated by
ChunkSpy that you are seeing does not give the startpc and endpc values contained in the
locals list. In theory, these rules can be broken if you write Lua assembly directly.
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>for i = 10,1,-1 do if i == 5 then break end end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 4 stacks
.function  0 0 2 4
.local  "(for index)"  ; 0
.local  "(for limit)"  ; 1
.local  "(for step)"  ; 2
.local  "i"  ; 3
.const  10  ; 0
.const  1  ; 1
.const  -1  ; 2
.const  5  ; 3
[1] loadk      0   0        ; 10
[2] loadk      1   1        ; 1
[3] loadk      2   2        ; -1
[4] forprep    0   3        ; to [8]
[5] eq         0   3   259  ; 5, to [7] if true
[6] jmp        1            ; to [8]
[7] jmp        1            ; to [9]
[8] forloop    0   -4       ; to [5] if loop
[9] return     0   1      
; end of function

In the second loop example above, except for a negative loop step size, the structure of the
loop is identical. The body of the loop is from line [5] to line [8]. Since no additional stacks
or states are used, a break translates simply to a JMP instruction (line [7]). There is nothing
to clean up after a FORLOOP ends or after a JMP to exit a loop.

Apart  from a numeric  for  loop (implemented by FORPREP and FORLOOP), Lua has a
generic for loop, implemented by TFORLOOP:

TFORLOOP A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); 
if R(A+3) ~= nil then {
    R(A+2) = R(A+3);
} else {
    PC++;
}

Performs an iteration of a generic for loop. A Lua 5-style generic for loop
keeps 3 items in consecutive register locations to keep track of things. R(A)
is the iterator function, which is called once per loop. R(A+1) is the state,
and R(A+2) is the enumeration index. At the start, R(A+2) has an initial
value. R(A), R(A+1) and R(A+2) are internal to the loop and cannot be
accessed by the programmer; at first, they are set with an initial state.

In addition to these internal loop variables, the programmer specifies one
or more loop variables that are external and visible to the programmer.
These loop variables reside at locations R(A+3) onwards, and their count is
specified in operand C. Operand C must be at least 1. They are also local
to the loop body, like the external loop index in a numerical for loop.

Each time TFORLOOP executes, the iterator function referenced by R(A)
is called with two arguments: the state and the enumeration index (R(A+1)
and R(A+2).) The results are returned in the local loop variables, from
R(A+3) onwards, up to R(A+2+C).
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Next, the first return value, R(A+3), is tested. If it is nil, the iterator loop is
at an end, and TFORLOOP skips the next instruction and the for loop
block ends. Note that the state of the generic for loop does not depend on
any of the external iterator variables that are visible to the programmer.

If R(A+3) is not nil, there is another iteration, and R(A+3) is assigned as
the new value of the enumeration index, R(A+2). Then next instruction,
which must be a JMP, is immediately executed, sending execution back to
the beginning of the loop. This is an optimization case; TFORLOOP will not
work correctly without the JMP instruction.

Like  the numerical  for  loop,  the  generic  for  loop  behave  a little  differently  in  Lua 5.1
compared to Lua 5.0.2. In the following example:

local a = {[1]=2,[2]=4,[3]=8}
local b = {}
for i,v in pairs(a) do
  b[i] = function() return v end
end
print(b[1](), b[2](), b[3]())

Lua 5.0.2 will print out 3 nils, while Lua 5.1 will print out 2, 4 and 8. In Lua 5.0.2, the scope
of the external iterator variables encloses the for  loop, resulting in the creation of a single
upvalue. In Lua 5.1, the iterator variables are truly local to the loop, resulting in the creation
of separate upvalues.

This example has a loop with one additional result (v) in addition the loop enumerator (i):

>for i,v in pairs(t) do print(i,v) end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 8 stacks
.function  0 0 2 8
.local  "(for generator)"  ; 0
.local  "(for state)"  ; 1
.local  "(for control)"  ; 2
.local  "i"  ; 3
.local  "v"  ; 4
.const  "pairs"  ; 0
.const  "t"  ; 1
.const  "print"  ; 2
[01] getglobal  0   0        ; pairs
[02] getglobal  1   1        ; t
[03] call       0   2   4  
[04] jmp        4            ; to [9]
[05] getglobal  5   2        ; print
[06] move       6   3      
[07] move       7   4      
[08] call       5   3   1  
[09] tforloop   0       2    ; to [11] if exit
[10] jmp        -6           ; to [5]
[11] return     0   1      
; end of function

The iterator function is  located in register 0, and is named  (for generator) for debugging
purposes. The state is in register 1, and has the name (for state). The enumeration index, (for
control), is contained in register 2. These correspond to locals R(A), R(A+1) and R(A+2) in
the TFORLOOP description. Results from the iterator function call is placed into register 3
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and 4, which are locals i and v, respectively. On line [9], the operand C of TFORLOOP is 2,
corresponding to two iterator variables (i and v).

Line [1]–[3] prepares the iterator state. Note that the call to the pairs standard library function
has 1 parameter and 3 results. After the call in line  [3], register 0 is  the iterator function,
register 1 is the loop state, register 2 is the initial value of the enumeration index. The iterator
variables i and v are both invalid at the moment, because we have not entered the loop yet.

Line  [4]  is  a  JMP to TFORLOOP on line  [9].  With  the initial  (or  zeroth)  iterator state,
TFORLOOP calls the iterator function, generating the first set of enumeration results in locals
i, v. If i is not nil, the internal enumeration index (register 2) is set and the JMP on the next
line is immediately executed, starting the first iteration of the loop body (lines [5]–[8]).

The  body  of  the  generic  for  loop  executes  (print(i,v) )  and  then  TFORLOOP  is
encountered again, calling the iterator function to get the next iteration state. Finally,  when
the first result is a nil, the loop ends, and execution continues on line [11].

repeat and while loops use a standard test-and-jump structure. Here is a repeat loop:

>local a = 0; repeat a = a + 1 until a == 10
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.const  0  ; 0
.const  1  ; 1
.const  10  ; 2
[1] loadk      0   0        ; 0
[2] add        0   0   257  ; 1
[3] eq         0   0   258  ; 10, to [5] if true
[4] jmp        -3           ; to [2]
[5] return     0   1      
; end of function

The body of the repeat  loop is line [2], while the test-and-jump scheme is implemented in
lines [3] and [4]. Although two instructions are needed to loop the loop, Lua 5.1 executes EQ
and JMP together, saving some time.

>local a = 1; while a < 10 do a = a + 1 end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.const  1  ; 0
.const  10  ; 1
[1] loadk      0   0        ; 1
[2] lt         0   0   257  ; 10, to [4] if true
[3] jmp        2            ; to [6]
[4] add        0   0   256  ; 1
[5] jmp        -4           ; to [2]
[6] return     0   1      
; end of function

For a while loop, the test (line[2]) is made first. If the test is true, execution continues with
the loop body (line [4]). A JMP on line [5] returns execution to the loop test instruction. This
is a little different from Lua 5.0.2 while loops, which have the loop test at the end of the loop
block and has a loop condition size limitation.
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A while loop in the Lua 5.0.2 style will look like this:

>local a = 1; while a < 10 do a = a + 1 end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "a"  ; 0
.const  1  ; 0
.const  10  ; 1
[1] loadk      0   0        ; 1
[2] jmp        1            ; to [4]
[3] add        0   0   256  ; 1
[4] lt         1   0   257  ; 10, to [6] if false
[5] jmp        -3           ; to [3]
[6] return     0   1      
; end of function

The sense of the condition test is reversed, while the loop body is at line [3]. The condition
test is made at the end of the loop on line [4].
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13  Table Creation
There are two instructions for table creation and initialization. One instruction creates a table
while the other instruction sets the array elements of a table.

NEWTABLE A B C R(A) := {} (size = B,C)

Creates a new empty table at register R(A). B and C are the encoded size
information for the array part and the hash part of the table, respectively.
Appropriate values for B and C are set in order to avoid rehashing when
initially populating the table with array values or hash key-value pairs.

Operand B and C are both encoded as a “floating point byte” (so named in
lobject.c ) which is eeeeexxx  in binary, where x  is the mantissa and e
is the exponent. The actual value is calculated as 1xxx*2^(eeeee-1)  if
eeeee  is greater than 0 (a range of 8 to 15*2^30.) If eeeee  is 0, the actual
value is xxx  (a range of 0 to 7.)

If an empty table is created, both sizes are zero. If a table is created with a
number of objects, the code generator counts the number of array
elements and the number of hash elements. Then, each size value is
rounded up and encoded in B and C using the floating point byte format.

Creating an empty table forces both array and hash sizes to be zero:

>local q = {}
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "q"  ; 0
[1] newtable   0   0   0    ; array=0, hash=0
[2] return     0   1      
; end of function

In later examples, we will  see how the size values are encoded. But first, we need to learn
about the SETLIST instruction, which is used to initialize array elements in a table.

SETLIST A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B

Sets the values for a range of array elements in a table referenced by
R(A). Field B is the number of elements to set. Field C encodes the block
number of the table to be initialized. The values used to initialize the table
are located in registers R(A+1), R(A+2), and so on.

The block size is denoted by FPF. FPF is “fields per flush”, defined as
LFIELDS_PER_FLUSH in the source file lopcodes.h , with a value of 50.
For example, for array locations 1 to 20, C will be 1 and B will be 20.

If B is 0, the table is set with a variable number of array elements, from
register R(A+1) up to the top of the stack. This happens when the last
element in the table constructor is a function call or a vararg operator.

If C is 0, the next instruction is cast as an integer, and used as the C value.
This happens only when operand C is unable to encode the block number,
i.e. when C > 511, equivalent to an array index greater than 25550.
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We’ll start with a simple example:

>local q = {1,2,3,4,5,}
; function [0] definition (level 1)
; 0 upvalues, 0 params, 6 stacks
.function  0 0 2 6
.local  "q"  ; 0
.const  1  ; 0
.const  2  ; 1
.const  3  ; 2
.const  4  ; 3
.const  5  ; 4
[1] newtable   0   5   0    ; array=5, hash=0
[2] loadk      1   0        ; 1
[3] loadk      2   1        ; 2
[4] loadk      3   2        ; 3
[5] loadk      4   3        ; 4
[6] loadk      5   4        ; 5
[7] setlist    0   5   1    ; index 1 to 5
[8] return     0   1      
; end of function

A table with the reference in register 0 is created in line [1] by NEWTABLE. Since we are
creating a table with no hash elements, the array part of the table has a size of 5, while the
hash part has a size of 0.

Constants are then loaded into temporary registers 1 to 5 (lines [2] to [6]) before the SETLIST
instruction in line [7] assigns each value to consecutive table elements. The start of the block
is encoded as 1 in operand C. The starting index is calculated as (1-1)*50+1 or 1. Since B is
5, the range of the array elements to be set becomes 1 to 5, while the objects used to set the
array elements will be R(1) through R(5).

Next is a larger table with 55 array elements. This will require two blocks to initialize. Some
lines have been removed and ellipsis (...) added to save space.

>local q = {1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0, \
>>1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0, \
>>1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,}
; function [0] definition (level 1)
; 0 upvalues, 0 params, 51 stacks
.function  0 0 2 51
.local  "q"  ; 0
.const  1  ; 0
.const  2  ; 1
...
.const  0  ; 9
[01] newtable   0   30  0    ; array=56, hash=0
[02] loadk      1   0        ; 1
[03] loadk      2   1        ; 2
...
[51] loadk      50  9        ; 0
[52] setlist    0   50  1    ; index 1 to 50
[53] loadk      1   0        ; 1
[54] loadk      2   1        ; 2
...
[57] loadk      5   4        ; 5
[58] setlist    0   5   2    ; index 51 to 55
[59] return     0   1      
; end of function
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Since FPF is 50, the array will be initialized in two blocks. The first block is for index 1 to
50, while the second block is for index 51 to 55. Each array block to be initialized requires
one SETLIST instruction. On line [1], NEWTABLE has a field B value of 30, or 00011110 in
binary. From the description of NEWTABLE, xxx  is 1102, while eeeee  is 112. Thus, the size
of the array portion of the table is (1110)*2^(11-1) or (14*2^2) or 56. 

Lines [2] to [51] sets the values used to initialize the first block. On line [52], SETLIST has a
B value of 50 and a C value of 1. So the block is from 1 to 50. Source registers are from R(1)
to R(50). Lines [53] to [57] sets the values used to initialize the second block. On line [58],
SETLIST has a B value of 5 and a C value of 2. So the block is from 51 to 55. The start of the
block is calculated as (2-1)*50+1 or 51. Source registers are from R(1) to R(5).

Here is a table with hashed elements:

>local q = {a=1,b=2,c=3,d=4,e=5,f=6,g=7,h=8,}
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "q"  ; 0
.const  "a"  ; 0
.const  1  ; 1
.const  "b"  ; 2
.const  2  ; 3
.const  "c"  ; 4
.const  3  ; 5
.const  "d"  ; 6
.const  4  ; 7
.const  "e"  ; 8
.const  5  ; 9
.const  "f"  ; 10
.const  6  ; 11
.const  "g"  ; 12
.const  7  ; 13
.const  "h"  ; 14
.const  8  ; 15
[01] newtable   0   0   8    ; array=0, hash=8
[02] settable   0   256 257  ; "a" 1
[03] settable   0   258 259  ; "b" 2
[04] settable   0   260 261  ; "c" 3
[05] settable   0   262 263  ; "d" 4
[06] settable   0   264 265  ; "e" 5
[07] settable   0   266 267  ; "f" 6
[08] settable   0   268 269  ; "g" 7
[09] settable   0   270 271  ; "h" 8
[10] return     0   1      
; end of function

In line [1], NEWTABLE is executed with an array part size of 0 and a hash part size of 8. On
lines [2] to line [9], key-value pairs are set using SETTABLE. The SETLIST instruction is
only for initializing array elements. Using SETTABLE to initialize the key-value pairs of a
table in the above example is quite efficient as it can reference the constant pool directly.

If there are both array elements and hash elements in a table constructor, both SETTABLE
and SETLIST will be used to initialize the table after the initial NEWTABLE. In addition, if
the last element  of the table constructor is a function call or a vararg operator, then the B
operand of SETLIST will be 0, to allow objects from R(A+1) up to the top of the stack to be
initialized as array elements of the table.
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>return {1,2,3,a=1,b=2,c=3,foo()}
; function [0] definition (level 1)
; 0 upvalues, 0 params, 5 stacks
.function  0 0 2 5
.const  1  ; 0
.const  2  ; 1
.const  3  ; 2
.const  "a"  ; 3
.const  "b"  ; 4
.const  "c"  ; 5
.const  "foo"  ; 6
[01] newtable   0   3   3    ; array=3, hash=3
[02] loadk      1   0        ; 1
[03] loadk      2   1        ; 2
[04] loadk      3   2        ; 3
[05] settable   0   259 256  ; "a" 1
[06] settable   0   260 257  ; "b" 2
[07] settable   0   261 258  ; "c" 3
[08] getglobal  4   6        ; foo
[09] call       4   1   0  
[10] setlist    0   0   1    ; index 1 to top
[11] return     0   2      
[12] return     0   1      
; end of function

In the above example, the table is first created in line [1] with its reference in register 0, and it
has both array and hash elements to be set. The size of the array part is 3 while the size of the
hash part is also 3.

Lines [2]–[4] loads the values for the first 3 array elements. Lines [5]–[7] sets the 3 key-value
pairs for the hash part of the table. In lines [8] and [9], the call to function foo is made, and
then in line [10], the SETLIST instruction sets the first 3 array elements (in registers 1 to 3)
plus whatever additional results returned by the foo function call (from register 4 onwards.)
This is accomplished by setting operand B in SETLIST to 0. For the first block, operand C is
1 as usual. If no results are returned by the function, the top of stack is at register 3 and only
the 3 constant array elements in the table are set.

>local a; return {a(), a(), a()}
; function [0] definition (level 1)
; 0 upvalues, 0 params, 5 stacks
.function  0 0 2 5
.local  "a"  ; 0
[01] newtable   1   2   0    ; array=2, hash=0
[02] move       2   0      
[03] call       2   1   2  
[04] move       3   0      
[05] call       3   1   2  
[06] move       4   0      
[07] call       4   1   0  
[08] setlist    1   0   1    ; index 1 to top
[09] return     1   2      
[10] return     0   1      
; end of function

Note that only the last function call in a table constructor retains all results. Other function
calls in the table constructor keep only one result. This is shown in the above example. For
vararg operators in table constructors, please see the discussion for the VARARG instruction
for an example.
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14  Closures and Closing
The final  two instructions of the Lua virtual machine  are a little involved because of the
handling of upvalues. The first is CLOSURE, for instantiating function prototypes:

CLOSURE A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))

Creates an instance (or closure) of a function. Bx is the function number of
the function to be instantiated in the table of function prototypes. This table
is located after the constant table for each function in a binary chunk. The
first function prototype is numbered 0. Register R(A) is assigned the
reference to the instantiated function object.

For each upvalue used by the instance of the function KPROTO[Bx], there
is a pseudo-instruction that follows CLOSURE. Each upvalue corresponds
to either a MOVE or a GETUPVAL pseudo-instruction. Only the B field on
either of these pseudo-instructions are significant.

A MOVE corresponds to local variable R(B) in the current lexical block,
which will be used as an upvalue in the instantiated function. A
GETUPVAL corresponds upvalue number B in the current lexical block.
The VM uses these pseudo-instructions to manage upvalues.

If the function prototype has no upvalues, then CLOSURE is pretty straightforward: Bx has
the function number and R(A) is assigned the reference to the instantiated function object.
However, when an upvalue comes into the picture, we have to look a little more carefully:

>local u; \
>>function p() return u end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "u"  ; 0
.const  "p"  ; 0

  ; function [0] definition (level 2)
  ; 1 upvalues, 0 params, 2 stacks
  .function  1 0 0 2
  .upvalue  "u"  ; 0
  [1] getupval   0   0        ; u
  [2] return     0   2      
  [3] return     0   1      
  ; end of function

[1] closure    1   0        ; 1 upvalues
[2] move       0   0      
[3] setglobal  1   0        ; p
[4] return     0   1      
; end of function

In the example, the upvalue in the level 2 function is u, and within the main chunk there is a
single function prototype (indented in the listing above for clarity.) In the top-level function,
line [1], the closure is made. In line [3] the function reference is saved into global p. Line [2]
is a part of the CLOSURE instruction (it not really an actual MOVE,) and its B field specifies
that upvalue number 0 in the closed function is really local u in the enclosing function.

-52-



Here is another example, with 3 levels of function prototypes:

>local m \
>>function p() \
>>  local n \
>>  function q() return m,n end \
>>end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "m"  ; 0
.const  "p"  ; 0

  ; function [0] definition (level 2)
  ; 1 upvalues, 0 params, 2 stacks
  .function  1 0 0 2
  .local  "n"  ; 0
  .upvalue  "m"  ; 0
  .const  "q"  ; 0

    ; function [0] definition (level 3)
    ; 2 upvalues, 0 params, 2 stacks
    .function  2 0 0 2
    .upvalue  "m"  ; 0
    .upvalue  "n"  ; 1
    [1] getupval   0   0        ; m
    [2] getupval   1   1        ; n
    [3] return     0   3      
    [4] return     0   1      
    ; end of function

  [1] closure    1   0        ; 2 upvalues
  [2] getupval   0   0        ; m
  [3] move       0   0      
  [4] setglobal  1   0        ; q
  [5] return     0   1      
  ; end of function

[1] closure    1   0        ; 1 upvalues
[2] move       0   0      
[3] setglobal  1   0        ; p
[4] return     0   1      
; end of function

First, look at the top-level function and the level 2 function – there is one upvalue, m. In the
top-level function, the closure in line [1] has one more instruction following it (the MOVE),
for the upvalue m. This is similar to the previous example.

Next, compare the level 2 function and the level 3 function – now there are two upvalues, m
and n. The m upvalue is found 2 levels up.  In the level 2 function, the closure in line [1] has
two instructions following it. The first is for upvalue number 0 (m) – it uses GETUPVAL to
indicate that the upvalue is one or more level lower down. The second is for upvalue number
1 (n) – it uses MOVE which indicate that the upvalue is in the same level as the CLOSURE
instruction. For both of these pseudo-instructions, the B field is used to point  either to the
upvalue or local  in  question.  The Lua virtual  machine  uses this  information (CLOSURE
information and upvalue lists) to manage upvalues; for the programmer, upvalues just works.
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The last instruction to be covered in this guide, CLOSE, also deals with upvalues:

CLOSE A close all variables in the stack up to (>=) R(A)

Closes all local variables in the stack from register R(A) onwards. This
instruction is only generated if there is an upvalue present within those
local variables. It has no effect if a local isn’t used as an upvalue.

If a local is used as an upvalue, then the local variable need to be placed
somewhere, otherwise it will go out of scope and disappear when a lexical
block enclosing the local variable ends. CLOSE performs this operation for
all affected local variables for do end blocks or loop blocks. RETURN also
does an implicit CLOSE when a function returns.

It is easier to understand CLOSE with an example:

>do \
>>  local p,q \
>>  r = function() return p,q end \
>>end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 2 3
.local  "p"  ; 0
.local  "q"  ; 1
.const  "r"  ; 0

  ; function [0] definition (level 2)
  ; 2 upvalues, 0 params, 2 stacks
  .function  2 0 0 2
  .upvalue  "p"  ; 0
  .upvalue  "q"  ; 1
  [1] getupval   0   0        ; p
  [2] getupval   1   1        ; q
  [3] return     0   3      
  [4] return     0   1      
  ; end of function

[1] closure    2   0        ; 2 upvalues
[2] move       0   0      
[3] move       0   1      
[4] setglobal  2   0        ; r
[5] close      0  
[6] return     0   1      
; end of function

p and q are local to the do end block, and they are upvalues as well. The global r is assigned
an anonymous function that has p and q as upvalues. When p and q go out of scope at the end
of the do end block, both variables have to be put somewhere because they are part of the
environment of the function instantiated in r. This is where the CLOSE instruction comes in.

In the top-level function, the CLOSE in line [5] makes the virtual machine find all affected
locals (they have to be open upvalues,) take them out of the stack, and place them in a safe
place so that they do not disappear when the block or function goes out of scope. A RETURN
instruction does an implicit CLOSE so the latter won’t appear very often in listings.
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Here is another example which illustrates a rather subtle point with CLOSE (thanks to Rici
Lake for this nugget):

>do \
>>  local p \
>>  while true do \
>>    q = function() return p end \
>>    break \
>>  end \
>>end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 2 2
.local  "p"  ; 0
.const  "q"  ; 0

  ; function [0] definition (level 2)
  ; 1 upvalues, 0 params, 2 stacks
  .function  1 0 0 2
  .upvalue  "p"  ; 0
  [1] getupval   0   0        ; p
  [2] return     0   2      
  [3] return     0   1      
  ; end of function

[1] closure    1   0        ; 1 upvalues
[2] move       0   0      
[3] setglobal  1   0        ; q
[4] jmp        1            ; to [6]
[5] jmp        -5           ; to [1]
[6] close      0  
[7] return     0   1      
; end of function

In the above example, a function is instantiated within a loop. In real-world code, a loop may
instantiate a number of such functions. Each of these functions will have its own p upvalue.
The subtle  point  is  that the  break  (the JMP on line  [4])  does not  jump  to the RETURN
instruction in line [7]; instead it reaches the CLOSE instruction on line [6]. Whether or not
execution exits  a loop normally  or through a  break,  the code within  the loop may have
caused the instantiation of one or more functions and their  associated upvalues.  Thus the
enclosing  do end  block  must  execute its  CLOSE instruction;  if  we always remember  to
associate the CLOSE with the do end block, there will be no confusion.

CLOSE also appears when for loops are used in the same manner. When using loop indices
or loop iterators as upvalues to instantiate functions,  each instantiation will  have its own
unique upvalue. This is the expected behaviour in Lua 5.1 if loop indices or iterators are to be
considered as locals to the loop body. Previously, Lua 5.0.2 considers loop indices or iterators
to be local to a block enclosing the entire loop, and instantiation of multiple functions only
results  in  a single  upvalue  shared between the functions.  Please see the section  on loop
instructions for sample code that illustrates this behaviour.
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15  Comparing Lua 5.0.2 and Lua 5.1
The following is list of changes to the Lua virtual machine instructions from version 5.0.2 to
version 5.1. This list  is  non-exhaustive, only changes noted during the writing of this guide
are listed. For the details, please read the relevant sections. If you are not familiar with Lua
5.0.2 virtual machine instructions, please read the older Lua 5.0.2 version of this guide.• Number of opcodes increased from 35 to 38.• Operand fields rearranged, from A|B|C|Opcode to B|C|A|Opcode. Bx and sBx fields

rearranged in the same way as well.• Maximum number of parameters per function is no longer limited to 100. It is now
limited by the maximum number of locals per function, which is 200.• Maximum number of upvalues per function increased to 60. Some of these limits have
their names changed.• Opcodes renamed: TEST has been renamed to TESTSET• Opcodes deleted: TFORPREP, SETLISTO• Opcodes added: MOD, LEN, TEST, VARARG, FORPREP• Also, some opcodes’ functionality have been changed. The numerical values of some
opcodes have changed as well.• Major changes to the binary chunk header. It now has a fixed size and the loader no
longer accepts chunks with a different endianness.• A format version byte has been added.• Operand width bytes have been deleted.• lua_Number encoding in the header has been simplified.• For a function prototype header, a last line defined has been added. The is_vararg flag
has changed considerably; it now has 3 fields.• For a function prototype, debug data has been pushed to the end, while the code list
has been brought to the front. The list of constants can have LUA_TBOOLEAN.• For RK(B) or RK(C) operands, an MSB flag is used instead of a biasing number to
differentiate registers and constants.• LOADNILs at the start of a function are now optimized away.• Limited constant folding is performed for arithmetic instructions, namely: ADD, SUB,
MUL, DIV, POW, MOD and UNM.• The MOD instruction is new.• The LEN instruction is new.• The VARARG instruction is new.• What used to be TEST in 5.0.2 is now TESTSET in 5.1.• The TEST instruction is new.• The FORPREP instruction is new.• FORLOOP behaviour has changed.• The semantics of the loop index for FORLOOP has changed.• TFORLOOP behaviour has changed.• TFORPREP has been deleted. Lua 5.1 no longer supports old-style generic loops.• The semantics of loop iterators for TFORLOOP has changed.• The limit to the complexity of while conditions has been removed.• The encoding of sizes for NEWTABLE has changed.• SETLIST behaviour has changed.• SETLISTO has been deleted. Its functionality has been merged into SETLIST.
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16  Digging Deeper
For studying larger snippets of Lua code and its disassembly, you can try ChunkSpy’s various
disassembly functions. Both vmmerge5 and ChunkSpy can merge source code lines into a
disassembly listing. ChunkSpy can provide more detail,  because it  processes every bit  of a
binary chunk.

A good way of studying how any instruction functions is to find where its opcode appears in
the Lua sources. For example, to see what MOVE does, look for OP_MOVE in lparser.c
(the parser), lcode.c  (the code generator) and lvm.c  (the virtual machine.) From the code
implementing  OP_MOVE, you can then move deeper into the code by following  function
calls.  I  found  this  approach  (bottoms  up,  following  the  execution  path  from  generated
opcodes to the functions that performs code generation) is a little easier than following the
recursive descent parser’s call graph. Once you have lots of little pictures, the big picture will
form on its own.

I hope you have enjoyed, as I did, poking your way through the internal organs of this Lua
thingy. Now that the Lua internals seem less magical and more practical,  I look forward to
some Dr Frankenstein experiments with my newfound knowledge...
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